PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

2D metal halide perovskites: a new fascinating playground for exciton fine structure investigations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Two-dimensional (2D) metal halide perovskites are natural quantum wells which consist of low bandgap metal-halide slabs, surrounded by organic spacers barriers. The quantum and dielectric confinements provided by the organic part lead to the extreme exciton binding energy which results in a huge enhancement of exciton fine structure in this material system. This makes 2D perovskites a fascinating playground for fundamental excitonic physics studies. In this review, we summarize the current understanding and quantification of the exciton fine structure in 2D perovskites. We discuss what is the role of exciton fine structure in the optical response of 2D perovskites and how it challenges our understanding of this fundamental excitation. Finally, we highlight some controversy related to particularly large bright-dark exciton states splitting and high efficiency of light emission from these materials. This can result from the unique synergy of excitonic and mechanical properties of 2D perovskites crystals.
Czasopismo
Rocznik
Strony
3--25
Opis fizyczny
Bibliogr. 86 poz., il. (w tym kolor.), rys., wykr.
Twórcy
  • Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
  • Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
  • Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
  • Laboratoire National des Champs Magnétiques Intenses, EMFL, CNRS UPR 3228, Université Grenoble Alpes, Université Toulouse, Université Toulouse 3, INSA-T, Grenoble and Toulouse, France
Bibliografia
  • [1] Egger, D. A.; Bera, A.; Cahen, D.; Hodes, G.; Kirchartz, T.; Kronik, L.; Lovrincic, R.; Rappe, A.M.; Reichman, D.R.; Yaffe, O.; What remains unexplained about the properties of halide Perovskites?. Adv. Mater. 2018, 30, 1800691. DOI: 10.1002/adma. 201800691
  • [2] Stranks, S.D.; Eperon, G.E.; Grancini, G.; Menelaou, C.; Alcocer, M.J.; Leijtens, T.; Herz, L.M.; Petrozza, A.; Snaith, H.J.; Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341-344. DOI: 10.1126/science.1243982
  • [3] Huang, J.; Yuan, Y.; Shao, Y.; Yan, Y.; Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2017, 2, 17042. DOI: 10.1038/natrevmats.2017.42
  • [4] Kang, J.; Wang, L.-W.; High defect tolerance in lead halide perovskite CsPbBr3. J. Phys. Chem. Lett. 2017, 8, 489-493. DOI: 10.1021/acs.jpclett.6b02800
  • [5] Huang, H.; Bodnarchuk, M.I.; Kershaw, S.V.; Kovalenko, M.V.; Rogach, A.L.; Lead halide perovskite nanocrystals in the research spotlight: Stability and defect tolerance. ACS Energy Lett. 2017, 2, 2071-2083. DOI: 10.1021/acsenergylett.7b00547
  • [6] Tsai, H.; Nie, W.; Blancon, J.C.; Stoumpos, C.C.; Asadpour, R.; Harutyunyan, B.; Neukirch, A.J.; Verduzco, R.; Crochet, J.J.; Tretiak, S.; et al. High-efficiency two-dimensional ruddlesden-popper perovskite solar cells. Nature 2016, 536, 312-316. DOI: 10.1038/nature18306
  • [7] Chen, Y.; Sun, Y.; Peng, J.; Tang, J.; Zheng, K.; Liang, Z.; 2D Ruddlesdene-Popper perovskites for optoelectronics. Adv. Mater. 2018, 30, 1703487. DOI: 10.1002/adma.201703487
  • [8] Blancon, J.C.; Tsai, H.; Nie, W.; Stoumpos, C.C.; Pedesseau, L.; Katan, C.; Kepenekian, M.; Soe, C.M.M.; Appavoo, K.; Sfeir, M.Y.; et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 2017, 355, 1288-1291. DOI: 10.1126/science.aal421
  • [9] Cao, D.H.; Stoumpos, C.C.; Farha, O.K.; Hupp, J.T.; Kanatzidis, M.G.; 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc. 2015, 137, 7843-7850. DOI: 10.1021/jacs.5b03796
  • [10] Gong, X.; Voznyy, O.; Jain, A.; Liu, W.; Sabatini, R.; Piontkowski, Z.; Walters, G.; Bappi, G.; Nokhrin, S.; Bushuyev, O.; et al. Electron-phonon interaction in efficient perovskite blue emitters. Nat. Mater. 2018, 17, 550-556. DOI: 10.1038/s41563-018-0081-x
  • [11] Straus, D.B.; Kagan, C.R.; Electrons, excitons, and phonons in two-dimensional hybrid perovskites: connecting structural, optical, and electronic properties. J. Phys. Chem. Lett. 2018, 9, 1434-1447. DOI: 10.1021/acs.jpclett.8b00201
  • [12] Mao, L.; Ke, W.; Pedesseau, L.; Wu, Y.; Katan, C.; Even, J.; Wasielewski, M.R.; Stoumpos, C.C.; Kanatzidis, M.G.; hybrid dion-jacobson 2d lead iodide perovskites. J. Am. Chem. Soc. 2018, 140, 3775-3783. DOI: 10.1021/jacs.8b00542
  • [13] Smith, M.D.; Karunadasa, H.I.; White-light emission from layered halide perovskites. Acc. Chem. Res. 2018, 51, 619-627. DOI: 10.1021/acs.accounts.7b00433
  • [14] Schilcher, M.J.; Robinson, P.J.; Abramovitch, D.J.; Tan, L.Z.; Rappe, A.M.; Reichman, D.R.; Egger, D.A.; The significance of polarons and dynamic disorder in halide perovskites. ACS Energy Lett. 2021, 6, 2162-2173. DOI: 10.1021/acsenergylett.1c00506
  • [15] Sendner, M.; Nayak, P.K.; Egger, D.A.; Beck, S.; Müller, C.; Epding, B.; Kowalsky, W.; Kronik, L.; Snaith, H.J.; Pucci, A.; Lovrinčić, R.; Optical phonons in methylammonium lead halide perovskites and implications for charge transport. Mater. Horizons 2016, 3, 613-620. DOI: 10.1039/C6MH00275G
  • [16] Paritmongkol, W.; Dahod, N.S.; Stollmann, A.; Mao, N.; Settens, C.; Zheng, S.; Tisdale, W.A.; Synthetic variation and structural trends in layered two-dimensional alkylammonium lead halide perovskites. Chem. Mater. 2019, 31, 5592-5607. DOI: 10.1021/acs.chemmater.9b01318
  • [17] Dyksik, M.; Wang, S.; Paritmongkol, W.; Maude, D.K.; Tisdale, W.A.; Baranowski, M.; Plochocka, P.; Tuning the excitonic properties of the 2D (PEA)2(MA)n-1PbnI3n+1 perovskite family via quantum confinement. J. Phys. Chem. Lett. 2021, 12, 1638-1643. DOI: 10.1021/acs.jpclett.0c03731
  • [18] Blancon, J.C.; Stier, A.V.; Tsai, H.; Nie, W.; Stoumpos, C.C.; Traore, B.; Pedesseau, L.; Kepenekian, M.; Katsutani, F.; Noe, G.T.; et al. Scaling law for excitons in 2D perovskite quantum wells. Nat. Commun. 2018, 9, 2254. DOI:10.1038/s41467-018-04659-x
  • [19] Du, K.Z.; Tu, Q.; Zhang, X.; Han, Q.; Liu, J.; Zauscher, S.; Mitzi, D.B.; Two-dimensional lead(II) halide-based hybrid perovskites templated by acene alkylamines: Crystal structures, optical properties, and piezoelectricity. Inorg. Chem. 2017, 56, 9291-9302. DOI: 10.1021/acs.inorgchem.7b01094
  • [20] Knutson, J.L.; Martin, J.D.; Mitzi, D.B.; Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating. Inorg. Chem. 2005, 44, 4699-4705. DOI: 10.1021/ic050244q
  • [21] Menahem, M.; Dai, Z.; Aharon, S.; Sharma, R.; Asher, M.; Diskin-Posner, Y.; Korobko, R.; Rappe, A.M.; Yaffe, O.; Strongly anharmonic octahedral tilting in two-dimensional hybrid halide perovskites. ACS Nano 2021, 15, 10153-10162. DOI: 10.1021/acsnano.1c02022
  • [22] Dyksik, M.; Duim, H.; Zhu, X.; Yang, Z.; Gen, M.; Kohama, Y.; Adjokatse, S.; Maude, D.K.; Loi, M.A.; Egger, D.A.; et al. Broad tunability of carrier effective masses in two-dimensional halide perovskites. ACS Energy Lett. 2020, 5, 3609-3616. DOI: 10.1021/acsenergylett.0c01758
  • [23] Pedesseau, L.; Sapori, D.; Traore, B.; Robles, R.; Fang, H.-H.; Loi, M.A.; Tsai, H.; Nie, W.; Blancon, J.-C.; Neukirch, A.; et al. Advances and promises of layered halide hybrid perovskite semiconductors. ACS Nano 2016, 10, 9776-9786. DOI: 10.1021/acsnano.6b05944
  • [24] Straus, D.B.; Hurtado Parra, S.; Iotov, N.; Zhao, Q.; Gau, M.R.; Carroll, P.J.; Kikkawa, J.M.; Kagan, C.R.; Tailoring hot exciton dynamics in 2D hybrid perovskites through cation modification. ACS Nano 2020, 14, 3621-3629 DOI: 10.1021/acsnano.0c00037
  • [25] Passarelli, J.V.; Mauck, C.M.; Winslow, S.W.; Perkinson, C.F.; Bard, J.C.; Sai, H.; Williams, K.W.; Narayanan, A.; Fairfield, D.J.; Hendricks, M.P.; et al. Tunable exciton binding energy in 2D hybrid layered perovskites through donor-acceptor interactions within the organic layer. Nat. Chem. 2020, 12, 672-682. DOI: 10.1038/s41557-020-0488-2
  • [26] Katan, C.; Mercier, N.; Even, J.; Quantum and dielectric confinement effects in lower-dimensional hybrid perovskite semiconductors. Chem. Rev. 2019, 119, 3140-3192. DOI: 10.1021/acs.chemrev.8b00417
  • [27] Gippius, N.A.; Muljarov, E.A.; Tikhodeev, S.G.; Ishihara, T.; Keldysh, L.V.; Dielectrically confined excitons and polaritons in natural superlattices-perovskite lead iodide semiconductors. MRS Online Proceedings Library 1993, 328, 775-780. DOI: 10.1557/PROC-328-775
  • [28] Ishihara, T.; Hong, X.; Ding, J.; Nurmikko, A.; Dielectric confinement effect for exciton and biexciton states in PbI4-based two-dimensional semiconductor structures. Surf. Sci. 1992, 267, 323-326. DOI: 10.1016/0039-6028(92)91147-4
  • [29] Hong, X.; Ishihara, T.; Nurmikko, A.V.; Dielectric confinement effects on excitons in PbI4-based layered semiconductors. Phys. Rev. B 1992, 45, 6961-6964. DOI: 10.1103/PHYSREVB.45.6961
  • [30] Tanaka, K.; Takahashi, T.; Kondo, T.; Umeda, K.; Ema, K.; Umebayashi, T.; Asai, K.; Uchida, K.; Miura, N.; Electronic and excitonic structures of inorganic-organic perovskite-type quantum-well crystal (C4H9NH3)2PbBr4. Jpn. J. Appl. Phys. 2005, 44, 5923. DOI: 10.1143/JJAP.44.5923
  • [31] Yaffe, O.; Chernikov, A.; Norman, Z.M.; Zhong, Y.; Velauthapillai, A.; van der Zande, A.; Owen, J.S.; Heinz, T.F.; Excitons in ultrathin organic-inorganic perovskite crystals. Phys. Rev. 2015, 92, 045414. DOI: 10.1103/PhysRevB.92.045414
  • [32] Cheng, B.; Li, T.; Maity, P.; Wei, P.; Nordlund, D.; Ho, K.; Lien, D.; Miao, X.; et al. Extremely reduced dielectric confinement in two-dimensional hybrid perovskites with large polar organics.; Commun. Phys. 2018, 1, 80. DOI: 10.1038/s42005-018-0082-8
  • [33] Straus, D.B.; Hurtado Parra, S.; Iotov, N.; Gebhardt, J.; Rappe, A.M.; Subotnik, J.E.; Kikkawa, J.M.; Kagan, C.R.; Direct observation of electron-phonon coupling and slow vibrational relaxation in organic-inorganic hybrid perovskites. J. Am. Chem. Soc. 2016, 138, 13798-13801. DOI: 10.1021/jacs.6b08175
  • [34] Gauthron, K.; Lauret, J.; Doyennette, L.; Lanty, G.; Al Choueiry, A.; Zhang, S.J.; Largeau, L.; Mauguin, O.; Bloch, J.; Deleporte, E.; Optical spectroscopy of two-dimensional layered (C6H5C2H4-NH3)2-PbI4 perovskite. Opt. Express 2010, 18, 5912-5919. DOI: 10.1364/OE.18.005912
  • [35] Gélvez-Rueda, M.C.; Hutter, E.M.; Cao, D.H.; Renaud, N.; Stoumpos, C.C.; Hupp, J.T.; Savenije, T.J.; Kanatzidis, M.G.; Grozema, F.C.; Interconversion between free charges and bound excitons in 2D hybrid lead halide perovskites. J. Phys. Chem. C 2017, 121, 26566-26574. DOI: 10.1021/acs.jpcc.7b10705
  • [36] Fu, H.; Wang, L.; Zunger, A.; Excitonic exchange splitting in bulk semiconductors. Phys. Rev. B 1999, 59, 5568-5574. DOI: 10.1103/PhysRevB.59.5568
  • [37] Bayer, M.; Ortner, G.; Stern, O.; Kuther, A.; Gorbunov, A.A.; Forchel, A.; Hawrylak, P.; Fafard, S.; Hinzer, K.; Reinecke, T.L.; et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B 2002, 65, 195315. DOI: 10.1103/PhysRevB.65.195315
  • [38] Fu, M.; Tamarat, P.; Huang, H.; Even, J.; Rogach, A.L.; Lounis, B.; Neutral and charged exciton fine structure in single lead halide perovskite nanocrystals revealed by magneto-optical spectroscopy. Nano Lett. 2017, 17, 2895-2901. DOI: 10.1021/acs.nanolett.7b00064
  • [39] Sercel, P.C.; Lyons, J.L.; Wickramaratne, D.; Vaxenburg, R.; Bernstein, N.; Efros, A.L.; Exciton fine structure in perovskite nanocrystals. Nano Lett. 2019, 19, 4068-4077. DOI: 10.1021/acs.nanolett.9b01467
  • [40] Ramade, J.; Andriambariarijaona, L.M.; Steinmetz, V.; Goubet, N.; Legrand, L.; Barisien, T.; Bernardot, F.; Testelin, C.; Lhuillier, E.; Bramati, A.; et al. Fine structure of excitons and electron-hole exchange energy in polymorphic CsPbBr3 single nanocrystals. Nanoscale 2018, 10, 6393-6401. DOI: 10.1039/C7NR09334A
  • [41] Becker, M.A.; Vaxenburg, R.; Nedelcu, G.; Sercel, P.C.; Shabaev, A.; Mehl, M.J.; Michopoulos, J.G.; Lambrakos, S.G.; Bernstein, N.; Lyons, J.L.; et al. Bright triplet excitons in caesium lead halide perovskites. Nature 2018, 553, 189. DOI: 10.1038/nature25147
  • [42] Tamarat, P.; Bodnarchuk, M.I.; Trebbia, J.-B.; Erni, R.; Kovalenko, M.V.; Even, J.; Lounis, B.; The ground exciton state of formamidinium lead bromide perovskite nanocrystals is a singlet dark state. Nat. Mater. 2019, 18, 717-724. DOI: 10.1038/s41563-019-0364-x
  • [43] Stevenson, R.M.; Young, R.J.; Atkinson, P.; Cooper, K.; Ritchie, D.A.; Shields, A.J.; A semiconductor source of triggered entangled photon pairs. Nature 2006, 439, 179-182. DOI: 10.1038/nature04446
  • [44] Senellart, P.; Solomon, G.; White, A.; High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 2017, 12, 1026-1039. DOI: 10.1038/nnano.2017.218
  • [45] Kataoka, T.; Kondo, T.; Ito, R.; Sasaki, S.; Uchida, K.; Miura, N.; Magneto-optical study on excitonic spectra in (C6H13NH3)2PbI4. Phys. Rev. B 1993, 47, 2010. DOI: 10.1103/PhysRevB.47.2010
  • [46] Do, T.T.H.; Del Aguila, A.G.; Zhang, D.; Xing, J.; Liu, S.; Prosnikov, M.A.; Gao, W.; Chang, K.; Christianen, P.C.M.; Xiong, Q.; Bright exciton fine-structure in two-dimensional lead halide perovskites. Nano Lett. 2020, 20, 5141-5148. DOI: 10.1021/acs.nanolett.0c01364
  • [47] Dyksik, M.; Duim, H.; Maude, D.K.; Baranowski, M.; Loi, M.A.; Plochocka, P.; Brightening of dark excitons in 2D perovskites. Sci. Adv. 2021, 7, 1-8. DOI: 10.1126/sciadv.abk0904
  • [48] Tanaka, K.; Takahashi, T.; Kondo, T.; Umeda, K.; Ema, K.; Umebayashi, T.; Asai, K.; Uchida, K.; Miura, N.; Electronic and excitonic structures of inorganic-organic perovskite-type quantum-well crystal (C4H9NH3)2PbBr4. Jpn. J. Appl. Phys. 2005, 44, 5923. DOI: 10.1143/jjap.44.5923
  • [49] Fang, H.; Yang, J.; Adjokatse, S.; Tekelenburg, E.; Kamminga, M.E.; Duim, H.; Loi, M.A.; Band‐edge exciton fine structure and exciton recombination dynamics in single crystals of layered hybrid perovskites. Adv. Funct. Mater. 2019, 30, 6, 1907979. DOI: 10.1002/adfm.201907979
  • [50] Folpini, G.; Cortecchia, D.; Petrozza, A.; Srimath Kandada, A.R.R.; The role of dark exciton reservoir in the luminescence efficiency of two-dimensional tin halide perovskites. J. Mater. Chem. C 2020, 8, 31, 10889-10896. DOI: 10.1039/d0tc01218a
  • [51] Blackwood, E.; Snelling, M.J.; Harley, R.T.; Andrews, S.R.; Foxon, C.T.; Exchange interaction of excitons in GaAs heterostructures. Phys. Rev. B Condens. Matter 1994, 50, 19, 14246-14254. DOI: 10.1103/PhysRevB.50.14246
  • [52] Gan, Z.X.; Wen, X.M.; Zhou, C.H.; Chen, W.J.; Zheng, F.; Yang, S.; Davis, J.A.; Tapping, P.C.; Kee Tak, W.; Zhang, H.; et al. Transient energy reservoir in 2D perovskites. Adv. Opt. Mater. 2019, 7, 1900971. DOI: 10.1002/adom.201900971
  • [53] Posmyk, K.; Zawadzka, N.; Dyksik, M.; Surrente, A.; Maude, D.K.; Kazimierczuk, T.; Babinski, A.; Molas, M.R.; Paritmongkol, W.; Maczka, M.; Tisdale, W.A.; Płochocka, P.; Baranowski, M.; Quantification of exciton fine structure splitting in a two-dimensional perovskite compound. J. Phys. Chem. Lett. 2022, 13, 4463-4469. DOI: 10.1021/acs.jpclett.2c00942
  • [54] Gramlich, M.; Swift, M.W.; Lampe, C.; Lyons, J.L.; Döblinger, M.; Efros, A.L.; Sercel, P.C.; Urban, A.S.; Dark and bright excitons in halide perovskite nanoplatelets. Adv. Sci. 2021, 9, 2103013. DOI: 10.29363/nanoge.incnc.2021.013
  • [55] Ramade, J.; Andriambariarijaona, L.M.; Steinmetz, V.; Goubet, N.; Legrand, L.; Barisien, T.; Bernardot, F.; Testelin, C.; Lhuillier, E.; Bramati, A.; et al. Fine structure of excitons and electron-hole exchange energy in polymorphic CsPbBr3 single nanocrystals. Nanoscale 2018, 10, 6393-6401. DOI: 10.1039/c7nr09334a
  • [56] Canneson, D.; Shornikova, E.V.; Yakovlev, D.R.; Rogge, T.; Mitioglu, A.A.; Ballottin, M.V.; Christianen, P.C.M.; Lhuillier, E.; Bayer, M.; Biadala, L.; Negatively charged and dark excitons in CsPbBr3 perovskite nanocrystals revealed by high magnetic fields. Nano Lett. 2017, 17, 6177-6183. DOI: 10.1021/acs.nanolett.7b02827
  • [57] Xu, K.; Vliem, J.F.; Meijerink, A.; Long-lived dark exciton emission in Mn-doped CsPbCl3 perovskite nanocrystals. J. Phys. Chem. 2019, 123, 979-984. DOI: 10.1021/acs.jpcc.8b12035
  • [58] Surrente, A.; Baranowski, M.; Plochocka, P.; Perspective on the physics of two-dimensional perovskites in high magnetic field. Appl. Phys. Lett. 2021, 118, 170501 DOI: 10.1063/5.0048490
  • [59] Yu, Z.G.; Effective-mass model and magneto-optical properties in hybrid perovskites. Sci. Rep. 2016, 6, 28576. DOI: 10.1038/srep28576
  • [60] Fieramosca, A.; De Marco, L.; Passoni, M.; Polimeno, L.; Rizzo, A.; Rosa, B.L.; Cruciani, G.; Dominici, L.; De Giorgi, M.; Gigli, G.; et al. Tunable out-of-plane excitons in 2D single-crystal perovskites. ACS Photonics 2018, 5, 4179-4185. DOI: 10.1021/acsphotonics.8b00984
  • [61] Steger, M.; Janke, S. M.; Sercel, P.C.; Larson, B.W.; Lu, H.P.; Qin, X.X.; Yu, V.W.Z.; Blum, V.; Blackburn, J.L.; On the optical anisotropy in 2D metal-halide perovskites. Nanoscale 2022, 14, 752-765. DOI: 10.1039/D1NR06899G
  • [62] Fang, H.H.; Yang, J.; Tao, S.; Adjokatse, S.; Kamminga, M.E.; Ye, J.; Blake, G.R.; Even, J.; Loi, M.A.; Unravelling light-induced degradation of layered perovskite crystals and design of efficient encapsulation for improved photostability. Adv. Funct. Mater. 2018, 28, 1800305. DOI: 10.1002/adfm.201800305
  • [63] Neutzner, S.; Thouin, F.; Cortecchia, D.; Petrozza, A.; Silva, C.; Srimath Kandada, A.R.; Erratum: Exciton-polaron spectral structures in two-dimensional hybrid lead-halide perovskites. Phys. Rev. Materials 2018, 4, 059901. DOI: 10.1103/physrevmaterials.4.059901
  • [64] Guo, Y.; Yaffe, O.; Hull, T.D.; Owen, J.S.; Reichman, D.R.; Brus, L.E.; Dynamic emission Stokes shift and liquid-like dielectric solvation of band edge carriers in lead-halide perovskites. Nat. Commun. 2019, 10, 1175. DOI: 10.1038/s41467-019-09057-5
  • [65] Zhu, X.-Y.; V. Podzorov, V.; Charge carriers in hybrid organic-inorganic lead halide perovskites might be protected as large polarons. J. Phys. Chem. Lett. 2015, 23, 4758-4761. DOI: 10.1021/acs.jpclett.5b02462
  • [66] Thouin, F.; Valverde-Chávez, D.A.; Quarti, C.; Cortecchia, D.; Bargigia, I.; Beljonne, D.; Petrozza, A.; Silva, C.; Kandada, A.R.S.; Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites. Nat. Mater. 2019, 18, 349-356. DOI: 10.1038/s41563-018-0262-7
  • [67] Tao, W.; Zhang, C.; Zhou, Q.; Zhao, Y.; Zhu, H.; Momentarily trapped exciton polaron in two-dimensional lead halide perovskites. Nat. Commun. 2021, 12, 1, 1400. DOI: 10.1038/s41467-021-21721-3
  • [68] Robert, C.; Amand, T.; Cadiz, F.; Lagarde, D.; Courtade, E.; Manca, M.; Taniguchi, T.; Watanabe, K.; Urbaszek, B.; Marie, X.; Fine structure and lifetime of dark excitons in transition metal dichalcogenide monolayers. Phys. Rev. B 2017, 96, 155423. DOI: 10.1103/physrevb.96.155423
  • [69] Fu, M.; Tamarat, P.; Trebbia, J.B.; Bodnarchuk, M.I.; Kovalenko, M.V.; Even, J.; Lounis, B.; Unraveling exciton-phonon coupling in individual FAPbI3 nanocrystals emitting near-infrared single photons. Nat. Commun. 2018, 9, 3318. DOI: 10.1038/s41467-018-05876-0
  • [70] Aguado, F.; Rodríguez, F.; Valiente, R.; Itiè, J.P.; Hanfland, M.; Pressure effects on Jahn-Teller distortion in perovskites: The roles of local and bulk compressibilities. Phys. Rev. B 2012, 85, 100101. DOI: 10.1103/physrevb.85.100101
  • [71] Jaffe, A.; Lin, Y.; Karunadasa, H.I.; Halide perovskites under pressure: accessing new properties through lattice compression. ACS Energy Lett. 2017, 2, 1549-1555. DOI: 10.1021/acsenergylett.7b00284
  • [72] Straus, D. B.; Iotov, N.; Gau, M. R.; Zhao, Q.; Carroll, P. J.; Kagan, C. R.; Longer cations increase energetic disorder in excitonic 2d hybrid perovskites. J. Phys. Chem. Lett. 2019, 10, 1198-1205. DOI: 10.1021/acs.jpclett.9b00247
  • [73] Feldstein, D.; Perea-Causin, R.; Wang, S.; Dyksik, M.; Watanabe, K.; Taniguchi, T.; Plochocka, P.; Malic, E.; Microscopic picture of electron-phonon interaction in two-dimensional halide perovskites. J. Phys. Chem. Lett. 2020, 11, 9975-9982. DOI: 10.1021/acs.jpclett.0c02661
  • [74] Mauck, C.M.; France-Lanord, A.; Hernandez Oendra, A.C.; Dahod, N.S.; Grossman, J.C.; Tisdale, W.A.; Inorganic cage motion dominates excited-state dynamics in 2D-layered perovskites (CxH2x 1NH3)2PbI4 (x = 4-9). J. Phys. Chem. 2019, 123, 45, 27904-27916. DOI: 10.1021/acs.jpcc.9b07933
  • [75] Srimath Kandada, A.R.; Silva, C.; Exciton polarons in two-dimensional hybrid metal-halide perovskites. J. Phys. Chem. Lett. 2020, 11, 3173-3184. DOI: 10.1021/acs.jpclett.9b02342
  • [76] Neutzner, S.; Thouin, F.; Cortecchia, D.; Petrozza, A.; Silva, C.; Kandada, A.R.S.; Exciton-polaron spectral structures in two-dimensional hybrid lead-halide perovskites. Phys. Rev. Materials 2018, 6, 064605. DOI: 10.1103/physrevmaterials.2.064605
  • [77] Yin, J.; Li, H.; Cortecchia, D.; Soci, C.; Bredas, J.L.; Excitonic and polaronic properties of 2D hybrid organic-inorganic perovskites. ACS Energy Lett. 2017, 2, 417-423. DOI: 10.1021/acsenergylett.6b00659
  • [78] Zhang, Z.; Fang, W.H.; Long, R.; Prezhdo, O.V.; Exciton dissociation and suppressed charge recombination at 2d perovskite edges: key roles of unsaturated halide bonds and thermal disorder. J. Am. Chem. Soc. 2019, 141, 15557-15566. DOI: 10.1021/jacs.9b06046
  • [79] Sun, Q.; Zhao, C.; Yin, Z.; Wang, S.; Leng, J.; Tian W.; Jin, S.; Ultrafast and high-yield polaronic exciton dissociation in two-dimensional perovskites. J. Am. Chem. Soc. 2021, 143, 19128-19136. DOI: 10.1021/jacs.1c08900
  • [80] Menéndez-Proupin, E.; Ríos, C.L.B.; Wahnón, P.; Nonhydrogenic exciton spectrum in perovskite CH3NH3PbI3. Phys. Status Solidi RRL 2015, 9, 559-563. DOI: 10.1002/pssr.201510265
  • [81] Pollmann, J.; Büttner, H.; Effective Hamiltonians and bindings energies of Wannier excitons in polar semiconductors. Phys. Rev. B 1977, 16, 4480. DOI: 10.1103/PhysRevB.16.4480
  • [82] Haken, H.; Die theorie des exzitons im festen Körper. Fortschr. Phys. 1958, 6, 271-334. DOI: 10.1002/prop.19580060602
  • [83] Bajaj, K.K.; Effect of electron-phonon interaction on the binding energy of a Wannier exciton in a polarizable medium. Solid State Commun. 1974, 15, 1221-1224. DOI: 10.1016/0038-1098(74)90055-6
  • [84] Filip, M.R.; Haber, J.B.; Neaton, J.B.; Phonon screening of excitons in semiconductors: halide perovskites and beyond. Phys. Rev. Lett. 2021, 127, 067401. DOI: 10.1103/physrevlett.127.067401
  • [85] Baranowski, M.; Plochocka, P.; Excitons in metal-halide perovskites. Adv. Energy Mater. 2020, 10, 1903659. DOI: 10.1002/aenm.201903659
  • [86] Filip, M.R.; Qiu, D.Y.; Del Ben M.; Neaton, J.B.; Screening of excitons by organic cations in quasi-two-dimensional organic-inorganic lead-halide perovskites. Nano Lett. 2022, 22, 4870-4878 DOI: 10.1021/acs.nanolett.2c01306
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5079691f-24da-4806-94bf-fde42adf40ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.