PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spinel zinc ferrite nanostructured thin-films for enhanced light-harvesting in polycrystalline solar cells

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Spinel zinc ferrite (ZnFe2O4) nanocrystallites are applied as an anti-reflection coating (ARC) for the enhanced light harvesting in polycrystalline silicon solar cells (PCSSC) and its effect were studied. Spinel zinc ferrite nanocrystallites were prepared using precursors of zinc and ferric chloride by co-precipitation method. The morphological, optical, electrical characterizations are comprehensively used to establish the performance of spinel ZnFe2O4Nanostructured Thin Films (NTF) covered and uncovered PCSSC. Further, X-ray diffraction and fluorescence analysis have been performed to demonstrate the crystallographic patterns and elemental compositions of ZnFe2O4nanocrystallites. The developed spinel ZnFe2O4NTF on PCSSC shows the reduction in reflectivity (20.3%), improvement in light trapping efficiency (17.5%) and transmittance of the fabricated spinel ZnFe2O4 NTF was validated with optical and electrical observations.
Wydawca
Rocznik
Strony
24--32
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Department of Mechatronics Engineering, Kongu Engineering College, Perundurai, Tamilnadu, 638060, India
  • Department of Mechanical Engineering, Kongu Engineering College, Perundurai, Tamilnadu, 638060, India
  • Department of Mechatronics Engineering, Kongu Engineering College, Perundurai, Tamilnadu, 638060, India
  • Department of Mechatronics Engineering, Kongu Engineering College, Perundurai, Tamilnadu, 638060, India
  • Department of Chemistry, Bharathiar University Arts and Science College, Modakurichi, Tamil Nadu, 638104, India
Bibliografia
  • [1] Devabhaktuni V, Alam M, Depuru SS, Green RC 2nd, Nims D, Near C. Solar energy: trends and enabling technologies. Renew Sustain Energy Rev. 2013;19:555–64. https://doi.org/10.1016/j.rser.2012.11.024
  • [2] Shi E, Li H, Yang L, Zhang L, Li Z, Li P, et al. Colloidal antireflection coating improves graphene-silicon solar cells. Nano Lett. 2013 Apr;13(4):1776–81. https://doi.org/10.1021/nl400353fPMID:23517083
  • [3] Saylan S, Milakovich T, Hadi SA, Nayfeh A, Fitzgerald EA, Dahlem MS. Multilayer antireflection coating design for GaAs0.69P0.31/Si dual-junction solar cells. Sol Energy. 2015;122:76–86. https://doi.org/10.1016/j.solener.2015.07.049
  • [4] Zhang W, Xu Y, Wang H, Xu C, Yang S. Fe3O4 nanoparticles induced magnetic field effect on efficiency enhancement of P3HT:PCBM bulk heterojunction polymer solar cells. Sol Energy Mater Sol Cells. 2011;95(10):2880–5. https://doi.org/10.1016/j.solmat.2011.06.005
  • [5] Kmita A, Pribulova A, Holtzer M, Futas P, Roczniak A. Use of Specific Properties of Zinc Ferrite in Innovative Technologies. Arch Metall Mater. 2016;61(4):2141–6. https://doi.org/10.1515/amm-2016-0289
  • [6] Atif M, Hasanain S, Nadeem M. Magnetization of sol–gel prepared zinc ferrite nanoparticles: effects of inversion and particle size. Solid State Commun. 2006;138(8):416–21. https://doi.org/10.1016/j.ssc.2006.03.023
  • [7] Kant Sharma R, Ghose R. Synthesis and characterization of nanocrystalline zinc ferrite spinel powders by homogeneous precipitation method. Ceram Int. 2015;41:14684. https://doi.org/10.1016/j.ceramint.2015.07.191
  • [8] Huang X, Zhang J, Rao W, Sang T, Song B, Wong C. Tunable electromagnetic properties and enhanced microwave absorption ability of flaky graphite/cobalt zinc ferrite composites. J Alloys Compd. 2016;662:409–14. https://doi.org/10.1016/j.jallcom.2015.12.076
  • [9] Zhu H, Gu X, Zuo D, Wang Z, Wang N, Yao K. Microemulsion-based synthesis of porous zinc ferrite nanorods and its application in a roomtemperature ethanol sensor. Nanotechnology. 2008 Oct;19(40):405503. https://doi.org/10.1088/0957-4484/19/40/405503 PMID:21832619
  • [10] Mandal S, Natarajan S, Tamilselvi A, Mayadevi S. Photocatalytic and antimicrobial activities of zinc ferrite nanoparticles synthesized through soft chemical route: A magnetically recyclable catalyst for water/wastewater treatment. J Environ Chem Eng. 2016;4(3):2706–12. https://doi.org/10.1016/j.jece.2016.05.020
  • [11] Chaudhary R, Roy K, Kanwar RK, Walder K, Kanwar JR. Engineered atherosclerosis-specific zinc ferrite nanocomplex-based MRI contrast agents. J Nanobiotechnology. 2016 Jan;14(1):6. https://doi.org/10.1186/s12951-016-0157-1 PMID:26775253
  • [12] Alhadlaq HA, Akhtar MJ, Ahamed M. Zinc ferrite nanoparticle-induced cytotoxicity and oxidative stress in different human cells. Cell Biosci. 2015 Sep;5(1):55. https://doi.org/10.1186/s13578-015-0046-6 PMID:26388990
  • [13] Prasad BD, Nagabhushana H, Thyagarajan K, Sharma S, Shivakumara C, Gopal N, et al. Incorporation of Cr 3+ ions in tuning the magnetic and transport properties of nano zinc ferrite. J Alloys Compd. 2016;657:95–108. https://doi.org/10.1016/j.jallcom.2015.09.270
  • [14] Shahsavar A, Ansarian R, Bahiraei M. Effect of line dipole magnetic field on entropy generation of Mn-Zn ferrite ferrofluid flowing through a minichannel using two-phase mixture model. Powder Technol. 2018;340:370–9. https://doi.org/10.1016/j.powtec.2018.09.052
  • [15] Liu SQ, Zhu XL, Zhou Y, Meng ZD, Chen ZG, Liu CB, et al. Smart photocatalytic removal of ammonia through molecular recognition of zinc ferrite/reduced graphene oxide hybrid catalyst under visible-light irradiation. Catal Sci Technol. 2017;7(15):3210–9. https://doi.org/10.1039/C7CY00797C
  • [16] Sun X, Zhang H, Zhou L, Huang X, Yu C. Polypyrrole-Coated Zinc Ferrite Hollow Spheres with Improved Cycling Stability for Lithium-Ion Batteries. Small. 2016 Jul;12(27):3732–7. https://doi.org/10.1002/smll.201601143 PMID:27259158
  • [17] Habibi MH, Habibi AH, Zendehdel M, Habibi M. Dyesensitized solar cell characteristics of nanocomposite zinc ferrite working electrode: effect of composite precursors and titania as a blocking layer on photovoltaic performance. Spectrochim Acta A Mol Biomol Spectrosc. 2013 Jun;110:226–32. https://doi.org/10.1016/j.saa.2013.03.051 PMID:23571086
  • [18] Chatterjee A, Das D, Pradhan S, Chakravorty D. Synthesis of nanocrystalline nickel-zinc ferrite by the sol-gel method. J Magn Magn Mater. 1993;127(1-2):214–8.https://doi.org/10.1016/0304-8853(93) 90217-P
  • [19] Kaliyannan GV, Palanisamy SV, Palanisamy M, Subramanian M, Paramasivam P, Rathanasamy R. Development of sol-gel derived gahnite anti-reflection coating for augmenting the power conversion efficiency of polycrystalline silicon solar cells. Mater Sci Pol. 2019;37(3):465–72. https://doi.org/10. 2478/msp-2019-0066
  • [20] Gul I, Ahmed W, Maqsood A. Electrical and magnetic characterization of nanocrystalline Ni–Zn ferrite synthesis by co-precipitation route. J Magn Magn Mater. 2008;320(3-4):270–5. https://doi.org/10.1016/j.jmmm.2007.05.032
  • [21] Gul I, Ahmed W, Maqsood A. Electrical and magnetic characterization of nanocrystalline Ni–Zn ferrite synthesis by co-precipitation route. J Magn Magn Mater. 2008;320(3-4):270–5. https://doi.org/10.1016/j.jmmm.2007.05.032
  • [22] Komarneni S, D’Arrigo MC, Leonelli C, Pellacani GC, Katsuki H. Microwave-hydrothermal synthesis of nanophase ferrites. J Magn Magn Mater. 1998;81:3041.
  • [23] Yan W, Jiang W, Zhang Q, Li Y, Wang H. Structure and magnetic properties of nickel–zinc ferrite microspheres synthesized by solvothermal method Mater Sci Eng B. 2010;171(1-3):144–8. https://doi.org/10.1016/j.mseb.2010.03.088
  • [24] Kim W, Saito F. Mechanochemical synthesis of zinc ferrite from zinc oxide and α-Fe2O3. Powder Technol. 2001;114(1-3):12–6. https://doi.org/10.1016/S0032-5910(00)00256-4
  • [25] Niyaifar M. Effect of Preparation on Structure and Magnetic Properties of ZnFe2O4. J Magn. 2014;19(2):101–5. https://doi.org/10.4283/JMAG.2014.19.2.101
  • [26] Venkataraju C, Sathishkumar G, Sivakumar K. Effect of cation distribution on the structural and magnetic properties of nickel substituted nanosized Mn–Zn ferrites prepared by co-precipitation method. J Magn Magn Mater. 2010;322(2):230–3. https://doi.org/10.1016/j.jmmm.2009.08.043
  • [27] Velu Kaliyannan G, Palanisamy SV, Palanisamy M, Chinnasamy M, Somasundaram S, Nagarajan N, et al. Utilization of 2D gahnite nanosheets as highly conductive, transparent and light trapping front contact for silicon solar cells. Appl Nanosci. 2019;9:1427. https://doi.org/10.1007/s13204-018-00949-4
  • [28] Norrman K, Ghanbari-Siahkali A, Larsen N. 6 Studies of spin-coated polymer films. Annu Rep Sect C Phys Chem. 2005;101:174. https://doi.org/10.1039/b408857n
  • [29] Velu Kaliyannan G, Palanisamy SV, Rathanasamy R, Palanisamy M, Nagarajan N, Sivaraj S, et al. An Extended Approach on Power Conversion Efficiency Enhancement Through Deposition of ZnS-Al2S3 Blends on Silicon Solar Cells. J Electron Mater. 2020;49:5937. https://doi.org/10.1007/s11664-020-08361-x
  • [30] Velu Kaliyannan G, Palanisamy SV, Rathanasamy R, Palanisamy M, Palaniappan SK, Chinnasamy M. Influence of ultrathin gahnite anti-reflection coating on the power conversion efficiency of polycrystalline silicon solar cell. J Mater Sci Mater Electron. 2020;31:2308. https://doi.org/10.1007/s10854-019-02763-2
  • [31] Deraz N, Alarifi A. Synthesis and characterization of pure and Li2O doped ZnFe2O4 nanoparticles via glycine assisted route. Polyhedron. 2009;28(18):4122–30. https://doi.org/10.1016/j.poly.2009.09.028
  • [32] Manohar A, Krishnamoorthi C, Naidu KC, Pavithra C. Dielectric, magnetic hyperthermia, and photocatalytic properties of ZnFe2O4 nanoparticles synthesized by solvothermal reflux method. Appl Phys, A Mater Sci Process. 2019;125(7):477. https://doi.org/10.1007/s00339-019-2760-0
  • [33] Ajmal M, Maqsood A. AC conductivity, density related and magnetic properties of Ni1−xZnxFe2O4 ferrites with the variation of zinc concentration. Mater Lett. 2008;62(14):2077–80. https://doi.org/10.1016/j.matlet.2007.11.019
  • [34] Mosleh M, Pryds N, Hendriksen PV. Thickness dependence of the conductivity of thin films (La,Sr)FeO3 deposited on MgO single crystal. Mater Sci Eng B. 2007;144(1-3):38–42. https://doi.org/10.1016/j.mseb.2007.07.089
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-506ef614-78bb-4d88-9b4f-dd6224666ad1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.