PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimizing manufacturing conditions of polymer microspheres as cell carriers for modular tissue engineering

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Microspheres (MS) made of biostable polymer, namely polystyrene, have been used as substrates for cell culture enabling rapid cell expansion in dynamic conditions. However, due to non-resorbability, polystyrene (PS) MS when repopulated with cells cannot be directly used in tissue engineering. Our concept was to produce MS from resorbable polymer – poly(L-lactide- -co-glycolide) (PLGA) as a support for adherent cells, e.g. osteoblasts. We hypothesize that such MS can be applied to the injured site to act as cell carriers or as modules for modular tissue engineering (MTE). In this article, we present the results of optimizing the PLGA MS manufacturing conditions via oil-in-water emulsification. Due to such a technique, MS with the required size, size distribution and properties suitable for cell culturing can be obtained. Three parameters of the oil-in-water emulsification were examined: the stirring speed of a water phase during MS manufacturing, the surfactant concentration, i.e. poly(vinyl alcohol) (PVA) in a water phase and concentration of PLGA in dichloromethane (DCM) as an oil phase. The results proved that the 7.5% PLGA concentration in DCM solution as an oil phase, the 0.5-2% concentration of PVA solution as a water phase and the stirring speed of water phase of 1000 rpm provided MS with the 160 μm mean diameter, which is suitable for cell culture. Moreover, the developed sieving and cleaning procedures were efficient to collect MS with the mean diameter of 280 μm, the more coherent size distribution and the ability to sink in the cell culture medium. The presence on the bottom of cell culture wells is crucial for MTE.
Rocznik
Strony
2--9
Opis fizyczny
Bibliogr. 12 poz., rys., zdj.
Twórcy
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] H. Onoe, S. Takeuchi: Cell-laden microfibers for bottom-up tissue engineering. Drug Discov. Today. 2 (2014) 236–246. https://doi.org/10.1016/j.drudis.2014.10.018.
  • [2] J.W. Nichol, A. Khademhosseini: Modular tissue engineering: engineering biological tissues from the bottom up. Soft Matter. 5 (2010) 1312–1319. https://doi.org/10.1039/b814285h.
  • [3] C.R. Correia, S. Nadine, J.F. Mano: Cell Encapsulation Systems Toward Modular Tissue Regeneration: From Immunoisolation to Multifunctional Devices, Adv. Funct. Mater. 1908061 (2020) 1–23. https://doi.org/10.1002/adfm.201908061.
  • [4] C.A. Custódio, V.E. Santo, M.B. Oliveira, M.E. Gomes, R.L. Reis, J.F. Mano: Functionalized Microparticles Producing Scaffolds in Combination with Cells. Adv. Funct. Mater. 24 (2014) 1391–1400. https://doi.org/10.1002/adfm.201301516.
  • [5] C.J. Connon: Approaches to Corneal Tissue Engineering: Top-down or Bottom-up? Procedia Eng. 110 (2015) 15–20. https://doi.org/10.1016/j.proeng.2015.07.004.
  • [6] T. Kemala: Preparation and characterization of microspheres based on blend of poly (lactic acid) and poly (e -caprolactone) with poly(vinyl alcohol) as emulsifier. Arab. J. Chem. 5 (2012) 103–108. https://doi.org/10.1016/j.arabjc.2010.08.003.
  • [7] B. Li, X. Wang, Y. Wang, W. Gou, X. Yuan, J. Peng, Q. Guo, S. Lu: Past, present, and future of microcarrier-based tissue engineering. J. Orthop. Transl. 3 (2015) 51–57. https://doi.org/10.1016/j.jot.2015.02.003.
  • [8] Shu-ying Wang, Xu-dong Shi, Zhi-hua Gan, Feng Wang: Preparation of PLGA Microspheres with Different Porous Morphologies. Chinese J. Polym. Sci. 33(1) (2015) 128-136. doi: 10.1007/s10118-014-1507-9
  • [9] C. Fu, X. Yang, S. Tan, L. Song: Enhancing Cell Proliferation and Osteogenic Differentiation of MC3T3-E1 Pre-osteoblasts by BMP-2 Delivery in Graphene Oxide-Incorporated PLGA / HA Biodegradable Microcarriers. Sci. Rep. 7 (2017) 1–13. https://doi.org/10.1038/s41598-017-12935-x.
  • [10] S. Yu, S. Yao, Y. Wen, Y. Wang, H. Wang, Q. Xu: Angiogenic microspheres promote neural regeneration and motor function recovery after spinal cord injury in rats. Nat. Publ. Gr. 6 (2016) 1–13. https://doi.org/10.1038/srep33428.
  • [11] F. Ito, H. Fujimori, K. Makino: Incorporation of water-soluble drugs in PLGA microspheres. Colloids Surfaces B Biointerfaces. 54 (2007) 173–178. https://doi.org/10.1016/j.colsurfb.2006.10.019.
  • [12] R.H. Parikh, J.R. Parikh, R.R. Dubey, H.N. Soni, K.N. Kapadia, Poly (D , L-Lactide-Co-Glycolide) Microspheres Containing 5-Fluorouracil: Optimization of Process Parameters, AAPS Pharm Sci Tech. 4 (2003) 1–8.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-506e8fd3-5541-4115-9735-8ac106ddadcf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.