PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation about the Manufacturing Technique of the Composite Corner Fitting Part

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Textile composite reinforcement forming has been employed in many aeronautic industries as a traditional composite manufacturing process. The double-curved shape manufacturing may be difficult and can lead to defects when the composite parts have high curvatures and large deformations. Compared with the textile composites forming, surface 3D weaving can demonstrate directly the geometry of final composite part without the stages involved in 2D product. The weaving in three directions is completely designed and warp and weft yarns are always perpendicular to the surfaces of the final 3D ply. These two manufacturing techniques are applied to produce an important piece of aircraft: the corner fitting. The 3D weaving results are compared with the experimental forming by a punch as same geometry as the corner fitting part. The conveniences and limits of each technique are investigated. The comparisons show particularly a perfect final 3D fabric with homogeneous fibre volume fraction performed by the surface 3D weaving technique.
Rocznik
Strony
111--120
Opis fizyczny
Bibliogr. 54 poz.
Twórcy
autor
  • University of Lille, ENSAIT, GEMTEX laboratory, F-59056, France
autor
  • University of Lille, ENSAIT, GEMTEX laboratory, F-59056, France
autor
  • University of Lille, ENSAIT, GEMTEX laboratory, F-59056, France
Bibliografia
  • 1. Advani, S.G. Flow and rheology in polymeric composites manufacturing. Amsterdam: Elsevier; 1994.
  • 2. Rudd, C.D., Long, A.C. Liquid Molding Technologies. Cambridge: Woodhead Pub. Lim.; 1997.
  • 3. Bickerton, S., Simacek, P., Guglielmi, S.E., Advani, S.G. (1997). Investigaition of draping and its effects on the mold filling process during manufacturing of a compound curved composite part, Compos Part A, 28, 801-16.
  • 4. Walther, J., Simacek, P., Advani, S.G. (2012). The effect of fabric and fiber tow shear on dual scale flow and fiber bundle saturation during liquid molding of textile composites. Int J Mater Form, 5(1), 83-97.
  • 5. Arbter, R., Beraud, J.M., Binetruy, C., et al. (2011). Experimental Determination of the Permeability of Textiles: A Benchmark Exercise. Compos Part A, 42(9), 1157-68.
  • 6. Ouagne, P., Bréard, J. (2011). Continuous transverse permeability of fibrous media. Compos Part A, 41(1), 22-8.
  • 7. Vernet, N., Ruiz, E., Advan, S., et al. (2014). Experimental Determination of the Permeability of Engineering Textiles: Benchmark II. Compos Part A,doi: http://dx.doi. org/10.1016/j.compositesa.
  • 8. Lee, S.H., Han, J.H., Kim, S.Y., Youn, J.R., Song, S.Y. (2010). Compression and Relaxation Behavior of Dry Fiber Preforms for Resin Transfer Molding. J. Compos Mater, 44(15), 1801-20.
  • 9. Skordos, A.A., Aceves, C.M., Sutcliffe, M.P.E. (2007). A simplified rate dependent model of forming and wrinkling of pre-impregnated woven composites. Compos Part A, 38, 1318–30.
  • 10. Lee, J., Hong, S., Yu, W., Kang, T. (2007). The effect of blank holder force on the stamp forming behavior of noncrimp fabric with a chain stitch. Compos Sci Tech, 67(3-4), 357-66.
  • 11. De Luycker, E., Morestin, F., Boisse, P., Marsal, D. (2009). Simulation of 3D interlock composite preforming. Compos Struct, 88(4), 615-23.
  • 12. Gereke, T., Döbrich, O., Hübner, M., Cherif, C. (2013). Experimental and Computational Composite Textile Reinforcement Forming: A Review. Compos Part A, 46, 1-10.
  • 13. Khan, M.A., Mabrouki, T., Vidal-Sallé, E., Boisse, P. (2010). Numerical and experimental analyses of woven composite reinforcement forming using a hypoelastic behaviour. Application to the double dome benchmark. J Mater Process Technol, 210(2), 378- 88.
  • 14. Peng, X., Rehman, Z.U. (2011). Textile composite double dome stamping simulation using a non-orthogonal constitutive model. Compos Sci Technol, 71(8), 1075-81.
  • 15. Charmetant, A., Vidal-Sallé, E., Boisse, P. (2011). Hyperelastic modelling for mesoscopic analyses ofcomposite reinforcements. Compos Sci Technol, 71(14), 1623-31.
  • 16. Allaoui, S., Boisse, P., Chatel, S., Hamila, N., Hivet, G., Soulat, D., Vidal-Salle, E. (2011). Experimental and numerical analyses of textile reinforcement forming of a tetrahedral shape. Compos Part A, 42(6), 612-22.
  • 17. Ouagne, P., Soulat, D., Tephany, C., Duriatti, D., Allaoui, S., Hivet, G. (2013). Mechanical characterisation of flax based woven fabrics and in situ measurements of tow tensile strain during the shape forming. J Compos Mater, 47, 3501-17.
  • 18. Capelle, E., Ouagne, P., Soulat, D., Duriatti, D. (2014). Complex shape forming of flax woven fabrics: Design of specific blank-holder shapes to prevent defects. Compos Part B, 62, 29-36.
  • 19. Harrison, P., Gomes, R., Curado-Correia, N. (2013). Press forming a 0/90 cross-ply advanced thermoplastic composite using the double-dome benchmark geometry. Compos Part A, 54, 56–69.
  • 20. Yin, H., Peng, X., Du, T., Chen, J. (2013). Forming of thermoplastic plain woven carbon composites: An experimental investigation. Journal of Thermoplastic Composite Materials. doi: 10.1177/0892705713503668.
  • 21. Haanappel, S.P., ten Thije, R.H.W., Sachs, U., Rietman, B., Akkerman, R. (2014). Formability analyses of unidirectional and textile reinforced thermoplastics. Compos Part A, 56, 80–92.
  • 22. Ouagne, P., Soulat, D., Moothoo, J., Capelle, E., Gueret, S. (2013). Complex shape forming of a flax woven fabric; analysis of the tow buckling and misalignement defect. Compos Part A, 51, 1–10.
  • 23. Potter, K., Khan, B., Wisnom, M., Bell, T., Stevens, J. (2008). Variability, fibre waviness and misalignment in the determination of the properties of composite materials and structures. Compos Part A, 39, 1343–54.
  • 24. Boisse, P., Hamila, N., Vidal-Sallé, E., Dumont, F. (2011). Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses. Compos Sci Tech, 71(5), 683-92.
  • 25. Skordos, A.A., Sutcliffe, M.P.F. (2008). Stochastic simulation of woven composites forming. Compos Sci Tech, 68, 283–96.
  • 26. Zhu, B., Yu, T.X., Teng, J., Tao, X.M. (2009). Theoretical Modeling of Large Shear Deformation and Wrinkling of Plain Woven Composite. J Compos Mater, 43, 125-38.
  • 27. Bloom, L.D., Wang, J., Potter, K.D. (2012). Damage progression and defect sensitivity: An experimental study of representative wrinkles in tension. Compos Part B, 45(1), 449-58.
  • 28. Hallander, P., Akermo, M., Mattei, C., Petersson, M., Nyman, T. (2013). An experimental study of mechanisms behind wrinkle development during forming of composite laminates. Compos Part A, 50, 54–64.
  • 29. Chu, T.C., Ranson, W.F., Sutton, M.A., Peters, W.H. (1985). Applications of digital-image correlation techniques to experimental mechanics. Exp Mech, 25(3), 232-34.
  • 30. Long, A.C., Rudd, C.D., Blagdon, M., Smith, P. (1996). Characterizing the processing and performance of aligned reinforcements during preform manufacture. Compos Part A, 27(4), 247-53.
  • 31. Lomov, S.V., Ivanov, D.S., Verpoest, I., et al. (2008). Full-field strain measurements for validation of meso-FE analysis of textile composites. Compos Part A, 39(8), 1218-31.
  • 32. Kamiya, R., Cheeseman, B.A., Popper, P., Chou, T.W. (2000). Some recent advances in the fabrication and design of three-dimensional textile preforms: a review. Compos Sci Tech, 60, 33-47.
  • 33. Mouritz, A.P., Bannister, M.K., Falzon, P.J., Leong, K.H. (1999). Review of applications for advanced threedimensional fibre textile composites. Compos Part A, 30, 1445–61.
  • 34. Bilisik, K. (2012). Multiaxis three-dimensional weaving for composites: A review. Textil Res J, 82(7), 725–43.
  • 35. Chen, X., Taylor, L.W., Tsai, L.J. (2011). An overview on fabrication of three-dimensional woven textile preforms for composites. Textil Res J, 81(9), 932–44.
  • 36. Karahan, M., Karahan, N. (2014). Influence of weaving structure and hybridization on the tensile properties of woven carbon-epoxy composites. Journal of Reinforced Plastics and Composites, 33, 212-22
  • 37. Bilisik, K., Karaduman, N.S., Bilisik, N.E., Bilisik, H.E. (2013). Textile Research Journal, doi: 10.1177/0040517513499437.
  • 38. Gokarnesha, N., Alagirusamy, R. (2009). Weaving of 3D fabrics: A critical appreciation of the developments. Textile Progress, 41, 1-58.
  • 39. Lefebvre, M., Boussu, F., Coutellier, D. (2013). Influence of high-performance yarns degradation inside threedimensional. Journal of Industrial Textiles, 42, 475-88.
  • 40. Miravete, A. 3-D textile reinforcements in composite materials, CRC Press, 322 pages, 1999.
  • 41. Legrand, X., et al. Tissage tridimensionnel surfacique, Patent No. FR20060054580, 27/10/2006.
  • 42. Legrand, X., et al. Pliage de coins tissés et formation de préformes renforcées. Patent No. FR20060054581, 27/10/2006.
  • 43. Legrand, X., Boussu, F., Blot, P., Guitard, D. (2009). A new technique of weaving 3D surface application to Carbon/ Epoxy corner fitting plies. Int J Mater Form, 2(Suppl 1), 185-87.
  • 44. Najjar, W., Legrand, X., Pupin, C., Dal Santo, P., Boude, S. (2012). A Simple Discrete Method for the Simulation of the Preforming of Woven Fabric Reinforcement. Key Engineering Materials, 504-506, 213-18.
  • 45. Najjar, W., Legrand, X., Dal Santo, P., Soulat, D., Boude, S. (2013). Analysis of the blank holder force effect on the preforming process using a simple discrete approach. Key Engineering Materials, 554-557, 441-46.
  • 46. Wang, P., Hamila, N., Boisse, P. (2013). Thermoforming simulation of multilayer composites with continuous fibres and thermoplastic matrix. Compos Part B, 52, 127-36.
  • 47. Prodromou, A.G., Chen, J. (1997). On the relationship between shear angle and wrinkling of textile composite performs. Compos Part A, 28A, 491-503.
  • 48. Allaoui, S., Hivet, G., Soulat, D., Wendling, A., Ouagne, P., Chatel, S. (2012). Experimental preforming of highly double curved shapes with a case corner using an interlock reinforcement. Int J Mater Form, DOI 10.1007/s12289- 012-1116-5.
  • 49. Hamila, N., Boisse, P., Sabourin, F., Brunet, M. (2009). A semi-discrete shell finite element for textile composite reinforcement forming simulation. Int J Numer Methods Eng, 79, 1443-66.
  • 50. Durville, D. (2010). Simulation of the mechanical behaviour of woven fabrics at the scale of fibers. Int J Mater Form, 3, 1241–51.
  • 51. Creech, G., Pickett, A.K. (2006). Meso-modelling of Non- Crimp Fabric composites for coupled drape and failure analysis. J Mater Sci, 41, 6725-36.
  • 52. ten Thije, R.H.W., Akkerman, R., Huétink, J. (2007). Large deformation simulation of anisotropic material using an updated Lagrangian finite element method. Comput Methods Appl Mech Eng, 196, 3141-50.
  • 53. Yu, W.R., Pourboghrata, F., Chungb, K., Zampaloni, M., Kang, T.J. (2002). Non-orthogonal constitutive equation for woven fabric reinforced thermoplastic composites. Compos Part A, 33, 1095–1105.
  • 54. Dufour, C., Wang, P., Boussu, F., Soulat, D. (2013). Experimental Investigation About Stamping Behaviour of 3D Warp Interlock Composite Preforms, Applied Composite Material, doi 10.1007/s10443-013-9369-9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-506d59d3-c6c9-4753-bb12-2b6d064bbf4c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.