Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The on-ground validation of control systems designed for manipulators working in orbit is very difficult due to the necessity of simulating the microgravity environment on Earth. In this paper, we present the possibilities of utilising the KUKA KUBE test-bed with industrial robots to experimentally verify space systems using hardware-in-the-loop tests. The fixed-base KUKA industrial robot is operated in gravitational environment, while the space system model plant is solved in real time parallel to on-ground experiment. The test-bed measurements are the input of the model plant, and the output of the model is treated as an input for the industrial robot actuation. In the performed experiment, the control system based on the Dynamic Jacobian is validated. The desired point that is reached by the manipulator’s endeffector is constant in the simulated environment and moving with respect to the test-bed frame. The position of the space manipulator’s end-effector is calculated by evaluating dynamics of the satellite in real-time model. The results show that the control system applied to the KUKA robot works correctly. The measurements from the torque sensors mounted in KUKA robot’s joints are in accordance with the simulation results. This fact enhances the possibilities of gravity compensation, thus simulating microgravity environment on the test-bed.
Rocznik
Strony
231--248
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- Centrum Badań Kosmicznych Polskiej Akademii Nauk (CBK PAN), Warsaw, Poland
autor
- Lodz University of Technology, Institute of Automatic Control, Department of Robot Control, Lodz, Poland
autor
- Centrum Badań Kosmicznych Polskiej Akademii Nauk (CBK PAN), Warsaw, Poland
autor
- Lodz University of Technology, Institute of Automatic Control, Department of Robot Control, Lodz, Poland
Bibliografia
- Artigas, J., De Stefano, M., Rackl, W., Lampariello, R., Brunner, B., Bertleff, W., Burger, R., Porges, O., Giordano, A., Borst, C., Albu-Schaeffer, A. (2015) The OOS-SIM: An on-ground simulation facility for on-orbit servicing robotic operations, Proc. IEEE International Conference on Robotics and Automation (ICRA'2015), Seattle, WA, USA.
- Basmadji, F.L., Seweryn, K., Sąsiadek, J.Z. (2020) Space robot motion planning in the presence of linear and angular momenta, Multibody System Dynamics, Vol. 50, 71-96.
- Cavenago, F., Giordano, A.M., Massari, M. (2019) Contact force observer for space robots, Proc. 58th IEEE Conference on Decision and Control (CDC’2019), Nice, France.
- Colmenarejo, P., Graziano, M., Novelli, G., Mora, D., Serra, P., Tomassini, A., Seweryn, K., Prisco, G., Gil Fernandez, J. (2019) On ground validation of debris removal technologies, Acta Astronautica, Vol. 158, 206-219.
- De Stefano, M., Mishra, H., Giordano, A.M., Lampariello, R., Ott, C. (2021) A Relative Dynamics Formulation for Hardware-in-the-Loop Simulation of On-Orbit Robotic Missions, IEEE Robotics and Automation Letters, Vol. 6, No. 2, 3569-3576.
- Dubowsky, S., Papadopoulos, E. (1993) The kinematics, dynamics, and control of free-flying and free-floating space robotic systems, IEEE Transactions on robotics and automation, Vol. 9, No. 5, 531-543.
- Ellery, A. (2019) Tutorial review on space manipulators for space debris mitigation, Robotics, Vol. 8, No. 2, 34.
- Featherstone, R., Orin, D. E. (2008) Dynamics, In: Siciliano, B., Khatib, O. (eds.), Handbook of Robotics, Chapter 2, Springer-Verlag, Berlin Heidelberg, 35-66.
- Flores-Abad, A., Ma, O., Pham, K., Ulrich, S. (2014) A review of space robotics technologies for on-orbit servicing, Progress in aerospace sciences, Vol. 68, 1-26.
- Gabiccini, M., Bracci, A., De Carli, D., Fredianelli, M., Bicchi, A. (2009) Explicit Lagrangian Formulation of the Dynamic Regressors for Serial Manipulators, Proc. XIX Aimeta Congress, Ancona, Italy
- Granosik, G., Zubrycki, I., Soghbatyan, T., Zarychta, D., Gawryszewski, M. (2016) KUBE - platforma robotyczna dla badań naukowych i prac wdrożeniowych [in polish: KUBE - Robotic platform for research and implementation], In: Tchoń K. and Zieliński C. (eds.), Prace Naukowe Politechniki Warszawskiej: Elektronika, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, Vol. 195, No. 1, 223-234.
- Li, Z., Wang, B., Liu, H. (2016) Target capturing control for space robots with unknown mass properties: a self-tuning method based on gyros and cameras, Sensors, Vol. 16, No. 9, 1383.
- Menon, C., Aboudan, A., Cocuzza, S., Bulgarelli, A., Angrilli, F. (2005) Free-flying robot tested on parabolic flights: Kinematic control, Journal of Guidance, Control, and Dynamics, Vol. 28, No. 4, 623-630.
- Menon, C., Busolo, S., Cocuzza, S., Aboudan, A., Bulgarelli, A., Bettanini, C., Marchesi, M., Angrilli, F. (2007) Issues and solutions for testing free-flying robots, Acta Astronautica, Vol. 60, No. 12, 957-965.
- Ratajczak, J., Tchoń, K. (2020) Normal forms and singularities of non-holonomic robotic systems: a study of free-floating space robots, Systems & Control Letters, Vol. 138, 104661.
- Rybus, T., Seweryn, K. (2016) Planar air-bearing microgravity simulators: review of applications, existing solutions and design parameters, Acta Astronautica, Vol. 120, 239-259.
- Rybus, T., Seweryn, K., Sąsiadek, J.Z. (2017) Control system for the free-floating space manipulator based on Nonlinear Model Predictive Control (NMPC), Journal of Intelligent & Robotic Systems, Vol. 85, No. 3, 491-509.
- Rybus, T., Wojtunik, M., Basmadji, F.L. (2022) Optimal collision-free path planning of a freefloating space robot using spline-based trajectories, Acta Astronautica, Vol. 190, 395-408.
- Safeea, M., Neto, P. (2018) KUKA Sunrise Toolbox: Interfacing Collaborative Robots With MATLAB, IEEE Robotics & Automation Magazine, Vol. 26, No. 1, 91-96.
- Saulnier, K., Pérez, D., Huang, R.C., Gallardo, D., Tilton, G., Bevilacqua, R. (2014) A sixdegree-of-freedom hardware-in-the-loop simulator for small spacecraft, Acta Astronautica, Vol. 105, No. 2, 444-462.
- Seweryn, K., Banaszkiewicz, M. (2008) Optimization of the trajectory of a general free-flying manipulator during the rendezvous maneuver, Proc. AIAA Guidance, Navigation, and Control Conference and Exhibit (AIAA-GNC’2008), Honolulu, HI, USA.
- Seweryn, K., Baran, J., Barciński, T., Colmenarejo, P., Łoś, A., Kowalski, T., Mollinedo, L., Mora, D., Musiał, J., Novelli, G., Oleś, J., Ososińska, K., Paśko, P., Prisco, G., Rybus, T., Serra, P., Wawrzaszek, R., Gil Fernandes, J. (2017) The prototype of space manipulator WMS LEMUR dedicated to capture tumbling satellites in on-orbit environment, Proc. 11th International Workshop on Robot Motion and Control (RoMoCo'2007), Wąsowo, Poland.
- Stürz, Y.R., Affolter, L.M., Smith, R.S. (2017) Parameter Identification of the KUKA LBR iiwa Robot Including Constraints on Physical Feasibility, IFAC-PapersOnLine, Vol. 50, No. 1, 6863-6868.
- Tatsch, A., Fitz-Coy, N., Gladun, S. (2006) On-orbit servicing: A brief survey, Proc. Performance Metrics for Intelligent Systems Workshop (PerMIS’2006), Gaithersburg, MD, USA.
- Watanabe, Y., Araki, K., Nakamura, Y. (1998) Microgravity experiments for a visual feedback control of a space robot capturing a target, Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, Victoria, Canada, 1998.
- Wilde, M., Clark, C., Romano, M. (2019) Historical survey of kinematic and dynamic spacecraft simulators for laboratory experimentation of on-orbit proximity maneuvers, Progress in Aerospace Sciences, Vol. 110, 100552.
- Xu, T., Fan J., Chen, Y., Ng, X., Ang, M. H., Fang, Q., Zhu, Y., Zhao, J. (2020) Dynamic Identification of the KUKA LBR iiwa Robot With Retrieval of Physical Parameters Using Global Optimization, IEEE Access, Vol. 8, 108018-108031.
- Xu, W., Liang, B., Xu, Y. (2011) Survey of modeling, planning, and ground verification of space robotic systems, Acta Astronautica, Vol. 68, No. 11-12, 1629-1649.
- Yoshida, K., Umetani, Y. (1990) Control of space free-flying robot, Proc. 29th IEEE Conference on Decision and Control (CDC’1990), Honolulu, HI, USA.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-506507fa-d9b6-49de-a3fe-9283014a8a11