PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Transformations and Soliton Solutions for a Variable-coefficient Nonlinear Schrödinger Equation in the Dispersion Decreasing Fiber with Symbolic Computation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Describing the dispersion decreasing fiber, a variable-coefficient nonlinear Schrödinger equation is hereby under investigation. Three transformations have been obtained from such a equation to the known standard and cylindrical nonlinear Schrödinger equations with the relevant constraints on the variable coefficients presented, which turn out to be more general than those previously published in the literature. Meanwhile, several families of exact dark-soliton-like and bright-soliton-like solutions are constructed. Also, we obtain some similarity solutions, which can be illustrated in terms of the elliptic and the second Painlevé transcendent equations.
Wydawca
Rocznik
Strony
207--219
Opis fizyczny
Bibliogr. 48 poz.
Twórcy
autor
  • Department of Basic, Jiangxi Vocational and Technical College of Communication, JiangXi 330013, China
autor
  • College of Computer, Jiangxi University of Traditional Chinese Medicine, JiangXi 330004, China
autor
  • ChongQing JianZhu College, ChongQing 400072, China
autor
  • College of Computer, Jiangxi University of Traditional Chinese Medicine, JiangXi 330004, China
Bibliografia
  • [1]. Liu JG, Li YZ, and Wei GM. Auto-Bäcklund transformation and soliton-typed solutions of the generalized Variable-Coefficient KP equation (in Chinese). Chinese physics letters. 2006;23(7):1670–1673. doi: http://dx.doi.org/10.1088/0256-307X/23/7/004.
  • [2]. Anjan B. 1-Soliton solution of the generalized Camassa-Holm Kadomtsev-Petviashvili equation. Communications in Nonlinear Science and Numerical Simulation. 2009; 14(6):2524–2527. doi:10.1016/j.physleta.2008.05.002.
  • [3]. Zhang HQ. Superfluous Order and the Proper Solution of the Maxwell Equation. Applied Mathematics and Mechanics. 1981; 2(3): 349–360. doi:10.1007/BF01877400;
  • [4]. Delvenne JC, Kurka P, and Blondel V. Decidability and Universality in Symbolic Dynamical Systems. Fundamenta Informaticae. 2006;74(4):463–490; Available from: http://www.researchgate.net/publication/1957073.
  • [5]. Ghodrat E, Nazila YF, Bhrawy AH, Sachin K, T. Houria, Ahmet Y, and Anjan B. Solitons and other solutions to the (3+1)-dimensional extended Kadomtsev-Petviashvili equation with power law nonlinearity. Romanian Reports in Physics. 2013;65(1):27–62;S.
  • [6]. Haddad, J. Mairesse and H. T. Nguyen. Synthesis and Analysis of Product-form Petri Nets. Fundamenta Informaticae. 2011;6709(1):288–307; doi:10.1007/978-3-642-21834-7 16.
  • [7]. Houria T, Benjamin JMS, Hayat T, Omar MA, and Anjan B. Shock wave solutions of the variants of the Kadomtsev-Petviashvili equation. Canadian Journal of Physics. 2011;89(9):979–984. doi:10.1139/p11-083.
  • [8]. Anwar JMJ, Marko P, and Anjan B. Soliton solutions for nonlinear Calaogero-Degasperis and potential Kadomtsev-Petviashvili equation. Computers & Mathematics with Applications. 2011;62(6):2621–2628. doi:10.1016/j.camwa.2011.07.075.
  • [9]. Zhang HQ, Xie HD, and Lu B. A symbolic computation method to decide the completess of tile solutions to the system of linear partial differential equations. Applied Mathematics & Mechanics. 2002; 23(10):1134–1139. Available from: http://www.docin.com/p-440480024.html;
  • [10]. W. Penczek, B. Wozna and A. Zbrzezny. Bounded model checking for the universal fragment of CTL. Fundamenta Informaticae. 2002;51(1):135–156. Available from: http://content.iospress.com/articles/fundamentainformaticae/fi51-1-2-09.
  • [11]. Ghodrat E, Nazila Y, Houria T, and Anjan B. Exact solutions of the (2 + 1)-dimensional Camassa-Holm Kadomtsev-Petviashvili equation. Nonlinear AnalysisModelling & Control. 2012;17(3):280–296. Available from: http://www.researchgate.net/publication/260405265.
  • [12]. Gardner CS, Greene JM, Kruskal MD, and Miura RM. Method for solving the Korteweg-de Vries equation. Physical Review Letters. 1967;19(6):1095–1097. doi:10.1103/PhysRevLett.19.1095.
  • [13]. Hu XB, and Ma WX. Application of Hirota’s bilinear formalism to the Toeplitz lattice-some special solitonlike solutions. Physics Letters A. 2002;293(3-4):161–165. doi:10.1016/S0375-9601(01)00850-7.
  • [14]. Woopyo H, and Jung YD. Auto-Bäcklund transformation and analytic solutions for general variable-coefficient KdV equation. Physics Letters A. 1999;257(3-4):149–152. doi:10.1016/S0375-9601(99)00322-9.
  • [15]. Tian B, and Gao YT. Variable-coefficient higher-order nonlinear Schrödinger model in optical fibers: New transformation with burstons, brightons and symbolic computation. Physics Letters A. 2006;359(3):241–248. doi:10.1016/j.physleta.2006.06.032.
  • [16]. LiuWJ, Tian B, Zhang HQ, Li LL, and Xue YS. Soliton interaction in the higher-order nonlinear Schrödinger equation investigated with Hirota’s bilinear method. Physical review. E. 2008;77(6):1–7. doi: http://dx.doi.org/10.1103/PhysRevE.77.066605.
  • [17]. Zhang HQ, Tian B, Lü X, and Meng XH. Soliton dynamics and elastic collisions in a spin chain with an external time-dependent magnetic field. Physica A: Statistical Mechanics and its Applications. 2010;389(3):367–374. doi:10.1016/j.physa.2009.09.025.
  • [18]. Barnett MP, Capitani JF, von Zur Gathen J, and Gerhard J. Symbolic calculation in chemistry: Selected examples. International Journal of Quantum Chemistry. 2004;100(2):80–104. doi:10.1002/qua.20097.
  • [19]. Tian B, Gao YT, and Zhu HW. Variable-coefficient higher order nonlinear Schrödinger model in optical fibers: Variable-coefficient bilinear form, Bäklund transformation, brightons and symbolic computation. Physics Letters A. 2007;366(3):223–229. doi:10.1016/j.physleta.2007.02.098.
  • [20]. Meng XH, Tian B, Xu T, Zhang HQ, and Feng Q. Solitonic solutions and Bäklund transformation for the inhomogeneous N-coupled nonlinear Schrödinger equations. PHYSICA. Section A. 2009;388(2):209–217. doi:10.1016/j.physa.2008.09.033.
  • [21]. Kivshar S, and Agrawal GP. Optical Solitons: From Fibers to Photonic Crystals. San Diego Academic. Press; 2003.
  • [22]. Hasegawa A, and Tappert F. Transmission of stationary nonlinear optical physics in dispersive dielectric fibers. I. Anomalous dispersion. Applied Physics Letters. 1973;23(3):142–144. http://dx.doi.org/10.1063/1.1654836.
  • [23]. Malomed BA, Mihalache D, Wise F, and Torner L. Spatiotemporal optical solitons. Journal of Optics B Quantum & Semiclassical Optics. 2005;7(5):R53–R72. doi:10.1088/1464-4266/7/5/R02.
  • [24]. Liu XB, and Li B. Dynamics of solitons of the generalized (3+1)-dimensional nonlinear Schrödinger equation with distributed coefficients. Chinese Physics B. 2011;20(11):339–345. 10.1088/1674-1056/20/11/ 114219.
  • [25]. Li HM, Ge L, and He JR. Nonautonomous bright solitons and soliton collisions in a nonlinear medium with an external potential. Chinese Physics B. 2012;21(5):50512–50519. doi: http://dx.doi.org/10.1088/1674-1056/21/5/050512.
  • [26]. Hasegawa A. Optical Solitons in Fibers. Berlin Springer. Press;1989.
  • [27]. Dodd RK, Eilbeck JC, Gibbon JD, and Morris HC. Solitons and Nonlinear Wave Equations. New York Academic. Press;1982.
  • [28]. Wang L, Gao YT, Sun ZY, Qi FH, Meng DX, and Lin GD. Solitonic interactions, Darboux transformation and double Wronskian solutions for a variable coefficient derivative nonlinear Schrödinger equation in the inhomogeneous plasmas. Nonlinear Dynamics. 2012;67(1):713–722. doi:10.1007/s11071-011-0021-7.
  • [29]. Chen HH, and Liu CS. Nonlinear wave and soliton propagation in media with arbitrary in homogeneities. Physics of Fluids . 1978;21:377–380. doi:http://dx.doi.org/10.1063/1.862236.
  • [30]. Wang DY, Wu DJ, and Huang GL. Solitary Waves in Space Plasmas. Shanghai Sci.-Tech. Edu. Pub. House; 2000.
  • [31]. Biswas A. Soliton perturbation theory for Alfv´en waves in plasmas. Physics of Plasmasn. 2005;12:22306–22308. doi: http://dx.doi.org/10.1063/1.1848109.
  • [32]. Ruderman MS. Propagation of solitons of the derivative nonlinear Schrödinger equation in a plasma with fluctuating density. Physics of Plasmas. 2002;9(6):2940–2945. doi:http://dx.doi.org/10.1063/1.1482764.
  • [33]. Xu T, Zhang CY, Wei GM, Li J, Meng XH, and Tian B. Symbolic-computation construction of transformations for a more generalized nonlinear Schrödinger equation with applications in inhomogeneous plasmas, optical fibers, viscous fluids and Bose-Einstein condensates. The European Physical Journal B. 2007; 55(3):323–332. doi:10.1140/epjb/e2007-00058-x.
  • [34]. Dai CQ, Wang YY, and Chen JL. Analytic investigation on the similariton transmission control in the dispersion decreasing fiber. Optics Communications. 2011;284(13):3440–3444. doi:10.1016/j.optcom.2011.03.033.
  • [35]. Wu XF, Hua GS, and Ma ZY. Evolution of optical solitary waves in a generalized nonlinear Schrödinger equation with variable coefficients. Nonlinear Dynamics. 2012;70(3):2259–2267. doi:10.1007/s11071-012-0616-7.
  • [36]. Wu L, Yang Q, and Zhang JF. Bright solitons on a continuous wave background for the inhomogeneous nonlinear Schrödinger equation in plasma. Journal of Physics A: Mathematical and General. 2006;39(38):11947–11953. doi:http://dx.doi.org/10.1088/0305-4470/39/38/019.
  • [37]. Li L, Li ZH, Li SQ, and Zhou GS. Modulation instability and soliton on cw background in inhomogeneous optical fiber media. Optics Communications. 2004;234(1-6):169–176. doi:10.1016/j.optcom.2004.02.022.
  • [38]. Serkin VN, and Hasegawa A. Novel soliton solutions of the nonlinear Schrödinger equation model. Physical Review Letters. 2000;85:4502–4505. doi: http://dx.doi.org/10.1103/PhysRevLett.85.4502.
  • [39]. Demiray H. Non-linear waves in a viscous fluid contained in an elastic tube with variable cross-section. International Journal of Non-Linear Mechanics. 2006;41(2):258–270. doi:10.1016/j.ijnonlinmec.2005.05.011.
  • [40]. Tian B, Shan WR, Zhang CY, Wei GM, and Gao YT. Transformations for a generalized variable coefficient nonlinear Schrödinger model from plasma physics, arterial mechanics and optical fibers with symbolic computation. The European Physical Journal B-Condensed Matter and Complex Systems. 2005;47(3):329–332. doi:10.1140/epjb/e2005-00348-3.
  • [41]. Zwillinger D. Handbook of Differential Equations. Boston: Academic. Press;1989.
  • [42]. Agrawal G. Nonlinear Fiber Optics. New York: Academic. Press; 2001. 3rd Edition.
  • [43]. Ablowitz J, and Clarhson PA. Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge: Cambridge Univ. Press; 1992.
  • [44]. Joshi N. Painlev´e property of general variable-coefficient versions of the Korteweg-de Vries and non-linear Schrödinger equations. Physics Letters A. 1987;125(9):456–460. doi:10.1016/0375-9601(87)90184-8.
  • [45]. Li J, Xu T, Meng XH, Zhang CY, Zhu HW, and Tian B. Symbolic computation on integrable properties of a variable-coefficient Korteweg-de Vries equation from arterial mechanics and Bose-Einstein condensates. Physica Scripta. 2007;75(3):278–284. Available from: http://stacks.iop.org/1402-4896/75/i=3/a=009.
  • [46]. Liu JG, Li YZ, and Tian B. Soliton-like solutions for the modified variable-coefficient Ginzburg-Landau equation. Communications in Nonlinear Science and Numerical Simulation. 2009;14(4):1214–1226. doi:10.1016/j.cnsns.2008.01.011.
  • [47]. Clarkson P. New similarity solutions for the modified Boussinesq equation. Journal of Physics A: Mathematical and General. 1989;22(13):2355–2367. doi:http://dx.doi.org/10.1088/0305-4470/22/13/029.
  • [48]. Ince E. Ordinary differential equations. New York: Dover. Press; 1956.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
W oryginale artykułu błędnie podana bibliografia - poz.: 3, 4, 7 zawierają po 2 pozycje.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-505c4316-1ee7-46ad-9c9f-4d55772f2b1a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.