PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experiences of UAS photogrammetric rockslide monitoring in the alpine terrain in High Tatras, Slovakia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The development of surveying methods and equipment has moved from conventional surveying methods to modern technologies such as Unmanned Aerial Systems (UAS) aerial photogrammetry or Terrestrial Laser Scanning (TLS). These methods were used to monitor the rockslide of the Tatranská magistrála hiking trail in the High Tatras, where a rockslide occurred as a result of its washing away. This research is devoted to a detailed comparison of the results obtained using different measurement methods based on the minimum distance of point clouds. During the research, TLS technology, UAS photogrammetry using DJI Phantom 4 RTK UAS and DJI Matrice 30T UAS were used, and freely available data from Airborne Laser Scanning (ALS) was also downloaded for comparison. The rockslide in the area of the hiking trail occurred by 2.32 m, which is confirmed by the method based on determining the minimum distance of points.
Czasopismo
Rocznik
Strony
51--71
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
  • Technical University of Kosice, Faculty of Mining, Ecology, Process Control and Geotechnology, Institute of Geodesy, Cartography and Geographical Information Systems, Kosice, Slovak Republic
  • Technical University of Kosice, Faculty of Mining, Ecology, Process Control and Geotechnology, Institute of Geodesy, Cartography and Geographical Information Systems, Kosice, Slovak Republic
  • Technical University of Kosice, Faculty of Mining, Ecology, Process Control and Geotechnology, Institute of Geodesy, Cartography and Geographical Information Systems, Kosice, Slovak Republic
  • Technical University of Kosice, Faculty of Mining, Ecology, Process Control and Geotechnology, Institute of Geodesy, Cartography and Geographical Information Systems, Kosice, Slovak Republic
  • Technical University of Kosice, Faculty of Mining, Ecology, Process Control and Geotechnology, Institute of Geodesy, Cartography and Geographical Information Systems, Kosice, Slovak Republic
Bibliografia
  • 1. Ajayi O.G., Ajulo J. (2021). Investigating the Applicability of Unmanned Aerial Vehicles (UAV) Photogrammetry for the Estimation of the Volume of Stockpiles. Quaestiones Geographicae, vol. 40, no. 1, pp. 25-38. https://doi.org/10.2478/quageo-2021-0002
  • 2. Albanwan H., Qin R., Liu J.K. (2024). Remote Sensing-Based 3D Assessment of Landslides: A Review of the Data, Methods, and Applications. Remote Sensing, vol. 16, no. 3. https://doi.org/10.3390/rs16030455
  • 3. Bariczová G., Erdélyi J., Honti R., Tomek L. (2021). Wall Structure Geometry Verification Using TLS Data and BIM Model. Applied Sciences, vol. 11, no. 24. https://doi.org/10.3390/app112411804
  • 4. Blistan P., Kovanic E., Zeliznaková V., Palková J. (2016). Using UAS photogrammetry to document rock outcrops. Acta Montanistica Slovaca, vol. 21, no. 2, pp. 154-161.
  • 5. Chang K.J., Chan Y.C., Chen R.F., Hsieh, Y.C. (2018). Geomorphological evolution of landslides near an active normal fault in northern Taiwan, as revealed by lidar and unmanned aircraft system data. Natural Hazards Earth System Sciences, vol. 18, no. 3, pp. 709-727. https://doi.org/10.5194/nhess-18-709-2018
  • 6. Ćwiąkała P., Gruszczyński W., Stoch T., Puniach E., Mrocheń D., Matwij W., Matwij K., Nędzka M., Sopata P., Wójcik A. (2020). UAV Applications for Determination of Land Deformations Caused by Underground Mining. Remote Sensing, vol. 12, no. 11. https://doi.org/10.3390/rs12111733
  • 7. Darvasi Y., Laugomer B., Shicht I., Hall J.K., Ram, E., Agnon A. (2024). Drone-Borne LiDAR and Photogrammetry Together with Historical Data for Studying a Paleo-Landslide Reactivated by Road-Cutting and Barrier Construction outside Jerusalem. Geotechnics, vol. 4, no. 3, pp. 786-806. https://doi.org/10.3390/geotechnics4030041
  • 8. DJI. 2023. PHANTOM 4 RTK Specs.. Dostupné na internete: https://www.dji.eom/sk/phantom-4-rtk/info#specs [cit. 2023-04-27]
  • 9. DJI. 2023. PHANTOM 4 RTK. https://www.dji.com/sk/phantom-4-rtk [access: 27.04.2023].
  • 10. Erdélyi J., Kopácik A., Kyrinovic P. (2020). Spatial Data Analysis for Deformation Monitoring of Bridge Structures. Applied Sciences, vol. 10, no. 23. https://doi.org/10.3390/app10238731
  • 11. Fetai B., Ostir K., Kosmatin Fras M., Lisec A. (2019). Extraction of Visible Boundaries for Cadastral Mapping Based on UAV Imagery. Remote Sensing, vol. 11, no. 13. https://doi.org/10.3390/rs11131510
  • 12. Fiz J.I., Martín P.M., Cuesta R., Subías E., Codina D., Cartes A. (2022). Examples and Results of Aerial Photogrammetry in Archeology with UAV: Geometric Documentation, High Resolution Multispectral Analysis, Models and 3D Printing. Drones, vol. 6, no. 36. https://doi.org/10.3390/drones6030059
  • 13. Gantimurova S., Parshin A., Erofeev V. (2021). GIS-Based Landslide Susceptibility Mapping of the Circum-Baikal Railway in Russia Using UAV Data. Remote Sensing, vol. 13, no. 18. https://doi.org/10.3390/rs13183629
  • 14. Geoportál. https://www.geoportal.sk/sk/zbgis/lls/ [access: 10.09.2024].
  • 15. Geotech s.r.o. 2023. Leica RTC360. https://www.geotech.sk/Produkty/Laserove- skenery-HDS/Leica-RTC360.html [access: 27.04.2023].
  • 16. Geotech s.r.o. 2023. Leica RTC360. https://www.geotech.sk/downloads/Laserove- skenery-HDS/Leica RTC360 sk2.pdf [access: 27.04.2023].
  • 17. Germanese D., Leone G.R., Moroni D., Pascali M.A., Tampucci M. (2019). Towards Structural Monitoring and 3D Documentation of Architectural Heritage Using UAV. In: Choroś K., Kopel M., Kukla E., Siemiński A. (ed.), Multimedia and Network Information Systems. MISSI 2018. Advances in Intelligent Systems and Computing, vol 833. Springer, Cham. https://doi.org/10.1007/978-3-319-98678-4 34
  • 18. Gomez C., Setiawan M.A., Listyaningrum N., Wibowo S.B., Hadmoko D.S., Suryanto W., Darmawan H., Bradak B., Daikai R., Sunardi S. et al. (2022). LiDAR and UAV SfM-MVS of Merapi Volcanic Dome and Crater Rim Change from 2012 to 2014. Remote Sensing, vol. 14, no. 20. https://doi.org/10.3390/rs14205193
  • 19. Hrebienok (Vysoké Tatry). https://www.severovychod.sk/vylet/hrebienok-vysoke-tatry [access: 1.09.2024].
  • 20. Jacko S., Farkasovsky R., Duriska I., Scerbáková B., Bátorová K. (2021). Critical Tectonic Limits for Geothermal Aquifer Use: Case Study from the East Slovakian Basin Rim. Resources, vol. 10, no. 4. https://doi.org/10.3390/resources10040031
  • 21. Jovancević S.D., Peranić J., Ruzić I., Arbanas Z. (2016). Analysis of a historical landslide in the Rjecina River Valley, Croatia. Geoenvironmental Disasters, 3, no. 26. DOI: 10.1186/s40677-016-0061-x
  • 22. Junaid M., Abdullah R.A., Sa’ari R. et al. (2022). Quantification of Rock Mass Condition Based on Fracture Frequency Using Unmanned Aerial Vehicle Survey for Slope Stability Assessment. Journal of the Indian Society of Remote Sensing, vol. 50, pp. 2041-2054. https://doi.org/10.1007/s12524-022-01578-9
  • 23. Kovanic L., Blistan P., Urban R., Stroner M., Blistanová M., Bartos K., Pukanská K. (2020). Analysis of the Suitability of High-Resolution DEM Obtained Using ALS and UAS (SfM) for the Identification of Changes and Monitoring the Development of Selected Geohazards in the Alpine Environment - A Case Study in High Tatras, Slovakia. Remote Sensing, vol. 12, no. 23. https://doi.org/10.3390/rs12233901
  • 24. Kovanic L., Blistan P. Urban R., Stroner M., Pukanská K., Bartos K., Palková J. (2020). Analytical Determination of Geometric Parameters of the Rotary Kiln by Novel Approach of TLS Point Cloud Segmentation. Applied Sciences, vol. 10, no. 21. https://doi.org/10.3390/app10217652
  • 25. Kovanic L., Petovsky P., Topitzer B., Blistan P. (2024). Complex Methodology for Spatial Documentation of Geomorphological Changes and Geohazards in the Alpine Environment. Land, vol. 13, no. 1. https://doi.org/10.3390/land13010112
  • 26. Kovanic L., Stroner M., Blistan P., Urban R., Boczek R. (2023). Combined Ground-Based and UAS SfM-MVS Approach for Determination of Geometric Parameters of the Large- Scale Industrial Facility - Case Study. Measurement, vol. 216. doi:10A016/jmeasuTement2023.112994
  • 27. Kyriou A., Nikolakopoulos K., Koukouvelas I., Lampropoulou P. (2021). Repeated UAV Campaigns, GNSS Measurements, GIS, and Petrographic Analyses for Landslide Mapping and Monitoring. Minerals, vol. 11, no. 3. https://doi.org/10.3390/min11030300
  • 28. Lambertini A., Mandanici E., Tini M.A., Vittuari L. (2022). Technical Challenges for Multi-Temporal and Multi-Sensor Image Processing Surveyed by UAV for Mapping and Monitoring in Precision Agriculture. Remote Sensing, vol. 14, no. 19. https://doi.org/10.3390/rs14194954
  • 29. Lin G., Sang K. (2022). Application of UAV-Based Oblique Photography in Architectural Design: The Case of Mengyuan Resort Hotel in Yunnan, China. In: T. Kang, Y. Lee (ed.), Proceedings of 2021 4th International Conference on Civil Engineering and Architecture. Lecture Notes in Civil Engineering, vol 201. Springer, Singapore. https://doi.org/10.1007/978-981-16-6932-3 38
  • 30. Marcis M., Frastia M., Kovanic E., Blistan P. (2023). Deformations of Image Blocks in Photogrammetric Documentation of Cultural Heritage - Case Study: Saint James’s Chapel in Bratislava, Slovakia. Applied Sciences, vol. 13, no. 1. https://doi.org/10.3390/app13010261
  • 31. Marín-Buzón C., Pérez-Romero A., Tucci-Álvarez F., Manzano-Agugliaro F. (2020). Assessing the Orange Tree Crown Volumes Using Google Maps as a Low-Cost Photogrammetric Alternative. Agronomy, vol. 10, no. 6. https://doi.org/10.3390/agronomy10060893
  • 32. Matrice 30 Series. DJI Enterprise. https://enterprise.dji.com/matrice-30/specs [access: 5.09.2024].
  • 33. Mavroulis S., Vassilakis E., Diakakis M., Konsolaki A., Kaviris G., Kotsi E., Kapetanidis V., Sakkas V., Alexopoulos J.D., Lekkas E. et al. (2022). The Use of Innovative Techniques for Management of High-Risk Coastal Areas, Mitigation of Earthquake-Triggered Landslide Risk and Responsible Coastal Development. Applied Sciences, vol. 12, no. 4. https://doi.org/10.3390/app12042193
  • 34. Migliazza M., Carriero M.T., Lingua A., Pontoglio E., Scavia C. (2021). Rock Mass Characterization by UAV and Close-Range Photogrammetry: A Multiscale Approach Applied along the Vallone dell’Elva Road (Italy). Geosciences, vol. 11, no. 11. https://doi.org/10.3390/geosciences11110436
  • 35. Mifijovsky J., Langhammer J. (2015). Multitemporal Monitoring of the Morphodynamics of a Mid-Mountain Stream Using UAS Photogrammetry. Remote Sensing, vol. 7, no. 7, pp. 8586-8609. https://doi.org/10.3390/rs70708586
  • 36. Mrázik F. (2019). Tatranská magistrála - najdlhsí chodnik (Tatranská magistrala - the longest trail). https://www.tatryportal.sk/najdlhsi-chodnik/ [access: 1.09.2024].
  • 37. Nguyen K.A., Jiang Y.J., Huang C.S., Kuo M.H., Chen W. (2024). Leveraging Internet News-Based Data for Rockfall Hazard Susceptibility Assessment on Highways. Future Internet, vol. 16, no. 8. https://doi.org/10.3390/fi16080299
  • 38. Park S., Choi Y. (2020). Applications of Unmanned Aerial Vehicles in Mining from Exploration to Reclamation: A Review. Minerals, vol. 10, no. 8. https://doi.org/10.3390/min10080663
  • 39. Po tatranskej magistrále IV (Following the Tatra highway IV) (2016). https://www.tatry.sk/po-tatranskej-magistrale-iv/ [access: 1.09.2024].
  • 40. Pukanská K., Bartos K., Bella P., Gasinec J., Blistan P., Kovanic E. (2020). Surveying and High- Resolution Topography of the Ochtiná Aragonite Cave Based on TLS and Digital Photogrammetry. Applied Science, vol. 10, no. 3. https://doi.org/10.3390/app10134633
  • 41. Rugg C., Tiefenthaler L., Rauch S., Gatterer H., Paal P., Strohle M. (2020). Rock Climbing Emergencies in the Austrian Alps: Injury Patterns, Risk Analysis and Preventive Measures. International Journal of Environmental Research and Public Health, vol. 17, no. 20. https://doi.org/10.3390/ijerph17207596
  • 42. Safár V., Potucková M., Karas J., Tłusty J., Stefanová E., Jancovic M., Cígler Zofková D. (2021). The Use of UAV in Cadastral Mapping of the Czech Republic. ISPRS International Journal of Geo-Information, vol. 10, no. 6. https://doi.org/10.3390/ijgi10060380
  • 43. Schroder W., Murtha T., Golden C., Scherer A.K., Broadbent E.N., Almeyda Zambrano A.M., Herndon K., Griffin R. (2021). UAV LiDAR Survey for Archaeological Documentation in Chiapas, Mexico. Remote Sensing, vol. 13, no. 23. https://doi.org/10.3390/rs13234731
  • 44. Sofranko M., Zeman R. (2014). Simulation of pipeline transport backfill mixtures. 15th International Carpathian Control Conference (ICCC). Velke Karlovice, Czech Republic, May 28th - 30th, 2014, IEEE, pp. 578-583.
  • 45. Stredisko Hrebienok (Center Hrebienok). http://www.vysoketatry.com/ciele/shrebienok/shrebienok.html [access: 1.09.2024].
  • 46. Trimble R12i. Geotronics Slovakia. https://geosoft.ee/wp-content/uploads/Datasheet- Trimble-R12i.pdf [access: 1.09.2024].
  • 47. Tyszkowski S., Zbucki Ł., Kaczmarek H., Duszyński F., Strzelecki M.C. (2023). Terrestrial Laser Scanning for the Detection of Coastal Changes along Rauk Coasts of Gotland, Baltic Sea. Remote Sensing, vol. 15, no. 6. https://doi.org/10.3390/rs15061667
  • 48. Urban R., Stroner M., Blistan P., Kovanic E., Patera M., Jacko S., Duriska I., Kelemen M., Szabo S. (2019). The Suitability of UAS for Mass Movement Monitoring Caused by Torrential Rainfall - A Study on the Talus Cones in the Alpine Terrain in High Tatras, Slovakia. ISPRS International Journal of Geo-Information, vol. 8, no. 8. https//www.mdpi.çom/2220-9964/8/8/3.17
  • 49. Wittenberger G., Sofranko M. (2015). Formation and protection against incrustation on the geothermal pipe by utilizing of geothermal water in the area of Durkov (Eastern Slovakia). Acta Montanistica Slovaca, vol. 20, no. 1, pp. 10-15.
  • 50. Yaprak S., Yildirim O., Susam T. (2017). UAV Based Agricultural Planning and Landslide Monitoring. TeMA-Journal of Land Use, Mobility and Environment, vol. 10, no. 3, pp. 325-338. https://doi.org/10.6092/1970-9870/5278
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5057cf32-85aa-4ce1-b323-8e264ec38ce7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.