PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Field models of induction heating for industrial applications

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Modele polowe grzania indukcyjnego w zastosowaniach przemyslowych
Języki publikacji
EN
Abstrakty
EN
In the paper, a benchmark in the area of induction heating is revisited in order to test methods and codes of field analysis in a comparative way. In particular, the transient thermal analysis of a steel-made cylindrical billet is considered: the coupled-field problem is non-linear and multiphysics. After briefly describing the benchmark problem, the results from a finite-difference solver and two finite-element solvers are presented and compared.
PL
W artykule przywołano wzorzec (benchmark) w obszarze grzania indukcyjnego w celu porównawczego przetestowania metod i kodów komputerowych w analizie pola. W szczególności skupiono się na analizie cieplnej stanów przejściowych stalowych wkładów cylindrycznych. Problem pól sprzężonych jest nieliniowy i wielofizyczny. Po krótkim opisania problemu wzorcowego zaprezentowano i porównano wyniki otrzymane z programów różnic skończonych i elementów skończonych.
Rocznik
Strony
1--5
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • Dept. of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
  • Dept. of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
autor
  • Department of Industrial Engineering, University of Padova, Via Gradenigo 6/A, 35131 Padova
autor
  • Department of Industrial Engineering, University of Padova, Via Gradenigo 6/A, 35131 Padova
autor
  • Department of Industrial Engineering, University of Padova, Via Gradenigo 6/A, 35131 Padova
autor
  • Department of Industrial Engineering, University of Padova, Via Gradenigo 6/A, 35131 Padova
autor
  • Department of Industrial Engineering, University of Padova, Via Gradenigo 6/A, 35131 Padova
Bibliografia
  • [1] “Testing Electromagnetic Analysis Methods (T.E.A.M.).” [Online]. Available: http://www.compumag.org/jsite/team.html. [Accessed: 11-May-2017].
  • [2] Di Barba P., Mognaschi M.E., Lowther D.A., Sykulski J.K., A Benchmark TEAM Problem for Multi-Objective Pareto Optimization of Electromagnetic Devices, IEEE Trans. Magn., Article in Press.
  • [3] Di Barba P., Dughiero F., Forzan M., and Sieni E., Improved solution to a multi-objective benchmark problem of inverse induction heating, International Journal of Applied Electromagnetics and Mechanics, 49 (2015), No. 2, 279–288.
  • [4] Di Barba P., Forzan M., and Sieni E., Multiobjective design optimization of an induction heating device: A benchmark problem, International Journal of Applied Electromagnetics and Mechanics, 47 (2015), No. 4, 1003–1013.
  • [5] Di Barba P., Mognaschi M.E., Lowther D.A. et al., A benchmark problem of induction heating analysis, International Journal of Applied Electromagnetics and Mechanics, 53(2017), No. S1, S139–S149.
  • [6] Di Barba P., Dolezel I., Mognaschi M.E., Savini A., and Karban P., Non-Linear Multi-Physics Analysis and Multi-Objective Optimization in Electroheating Applications, IEEE Transactions on Magnetics, 50(2014), No. 2, 673–676.
  • [7] Di Barba P., Dolezel I., Karban P., Kus P., Mach F., Mognaschi M.E., Savini A., Multiphysics field analysis and multiobjective design optimization: a benchmark problem, Inverse Problems in Science and Engineering, 22 (2014), no. 7,1214–1225.
  • [8] Y. Pleshivtseva, Rapoport E., Nacke B., Nikanorov A. et al., Design concepts of induction mass heating technology based on multiple-criteria optimization, COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, 36(2017), No. 2, 386–400.
  • [9] Pleshivtseva Y., Di Barba P., Rapoport E., Nacke B. et al., Multi-objective optimisation of induction heaters design based on numerical coupled field analysis, International Journal of Microstructure and Materials Properties, 9(2014), No. 6, 532– 551.
  • [10] Dughiero F., Forzan M., Pozza C., and Sieni E., A Translational Coupled Electromagnetic and Thermal Innovative Model for Induction Welding of Tubes, IEEE Transactions on Magnetics, 48(2012), No. 2, 483–486.
  • [11] Agarwal P.D., Eddy-current losses in solid and laminated iron, Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics, 78(1959), No. 2, 169– 181.
  • [12] Kagimoto H., Miyagi D., Takahashi N., Uchida N., and Kawanaka K., Effect of Temperature Dependence of Magnetic Properties on Heating Characteristics of Induction Heater, IEEE Transactions on Magnetics, 46 (2010), No. 8, 3018–3021.
  • [13] Tanaka T. and Homma M., Temperature dependence of the effective permeability of heat treated Sendust alloys, IEEE Transactions on Magnetics, 21(1985), No. 4, 1295–1300.
  • [14] Zedler T., Nikanorov A., and Nacke B., Investigation of relative magnetic permeability as input data for numerical simulation of induction surface hardening, presented at the International Scientific Colloquium Modelling for Electromagnetic Processing, Hannover, 2008, 119–126.
  • [15] Vladimirov S.N., Zeman S.N., and Ruban V.V., Analytical approximations of thermal dependence of permeability of construction steels,” in Proc. of Tomsk univ., 31(2009).
  • [16] “MagNet 2D/3D Electromagnetic Field Simulation Software | Infolytica Corporation.” [Online]. Available: http://www.infolytica.com/en/products/magnet/. [Accessed: 11- January-2018].
  • [17] “Flux electromagnetic and thermal finite element software.” [Online]. Available: http://www.cedrat.com/software/flux/. [Accessed: 11-January-2018].
  • [18] Nemkov V., Bukanin V., and Zenkov A., Learning and teaching induction heating using the program ELTA., in Proc. HES-10, Padova, Italy, 2010, 99–106.
  • [19] “Use of the ELTA software for study of electromagnetic and thermal processes in induction heating steel forging lines.” [Online]. Available: http://www.nsgsoft.com/contact-us/11- publications/32-practice-of-computer-assisted-design-ofinduction- installations-3. [Accessed: 11-January-2018].
  • [20] Canova A. et al., Identification of Equivalent Material Properties for 3-D Numerical Modeling of Induction Heating of Ferromagnetic Workpieces, IEEE Transactions on Magnetics, 45(2009), No. 3, 1851–1854.
  • [21] Di Barba P., Komeza K., Juszczak E.N., Lecointe J.P., Napieralski P., and Hihat N., Automated B-H curve identification algorithm combining field simulation with optimisation methods and exploiting parallel computation, Science, Measurement & Technology, IET, 6(2012), No. 5, 369–375.
  • [22] Di Barba P., Savini A., and Wiak S., Field models in electricity and magnetism. [Dordrecht]: Springer, 2008.
  • [23] Binns K.J., Lawrenson P.J., and Trowbridge C.W, The analytical and numerical solution of electric and magnetic fields. Chichester: Wiley, 1992.
  • [24] Canova A. et al., Simplified Approach for 3-D Nonlinear Induction Heating Problems, IEEE Transactions on Magnetics, 45(2009), No. 3, 1855–1858.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5057c18d-e716-40fd-bfa6-51c9e12e10da
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.