PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Attributing mean circulation patterns to physical phenomena in the Gulf of Finland

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We studied circulation patterns in the Gulf of Finland, an estuary-like sub-basin of the Baltic Sea. According to previous observations and model results, the long-term mean circulation in the gulf is cyclonic and mainly density driven, whereas short-term circulation patterns are wind driven. We used the high-resolution 3D hydrodynamic model NEMO to simulate the years 2012-2014. Our aim was to investigate the role of some key features, like river runoff and occasional events, in the formation of the circulation patterns. Our results show that many of the differences visible in the annual mean circulation patterns from one year to another are caused by a relatively small number of high current speed events. These events seem to be upwelling-related coastal jets. Although the Gulf of Finland receives large amounts of fresh water in river runoffs, the inter-annual variations in runoff did not explain the variations in the mean circulation patterns.
Słowa kluczowe
Czasopismo
Rocznik
Strony
16--31
Opis fizyczny
Bibliogr. 39 poz., mapy, wykr.
Twórcy
  • Finnish Meteorological Institute, Marine Research, Helsinki, Finland
autor
  • Finnish Meteorological Institute, Marine Research, Helsinki, Finland
autor
  • Finnish Meteorological Institute, Marine Research, Helsinki, Finland
autor
  • Finnish Environment Institute, Marine Research Centre, Helsinki, Finland
  • Russian State Hydrometeorological University, Saint Petersburg, Russia
Bibliografia
  • [1] Alenius, P., Myrberg, K., Nekrasov, A., 1998. The physical oceanography of the Gulf of Finland: a review. Boreal Environ. Res. 3, 97-125.
  • [2] Alenius, P., Nekrasov, A., Myrberg, K., 2003. Variability of the baroclinic Rossby radius in the Gulf of Finland. Cont. Shelf Res. 23, 563-573.
  • [3] Andrejev, O., Myrberg, K., Alenius, P., Lundberg, P. A., 2004. Mean circulation and water exchange in the Gulf of Finland — a study based on three-dimensional modelling. Boreal Environ. Res. 9, 1-16.
  • [4] Andrejev, O., Sokolov, A., Soomere, T., Värv, R., Viikmäe, B., 2010. The use of high-resolution bathymetry for circulation modelling in the Gulf of Finland. Est. J. Eng. 19, 187-210, http://dx.doi.org/10.3176/eng.2010.3.01.
  • [5] Axell, L., 2016. Baltic Sea Physics Reanalysis from SMHI. [WWW Document], http://marine.copernicus.eu/documents/PUM/CMEMS-BAL-PUM-003-008.pdf.
  • [6] Bergström, S., Carlsson, B., 1994. River run-off to the Baltic Sea: 1950-1990. Ambio 23, 280-287.
  • [7] Donnelly, C., Andersson, J. C. M., Arheimer, B., 2016. Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across Europe. Hydrol. Sci. J. 61, 255-273.
  • [8] Elken, J., Nomm, M., Lagemaa, P., 2011. Circulation patterns in the Gulf of Finland derived from the EOF analysis of model results. Boreal Environ. Res. 16, 84-102.
  • [9] Ferry, N., Parent, L., Masina, S., Storto, A., Zuo, H., Balmaseda, M., 2016. Global Ocean Physics Reanalysis Glorys2V3. [WWW Document], http://marine.copernicus.eu/documents/PUM/CMEMS-GLO-PUM-001-009-011-017.pdf.
  • [10] HIRLAM-B, 2015. System Documentation. [WWW Document], http://www.hirlam.org/.
  • [11] Hordoir, R., An, B. W., Haapala, J., Meier, H. E. M., 2013a. A 3D Ocean Modelling Configuration for Baltic and North Sea Exchange Analysis. [WWW Document], http://www.smhi.se/polopoly_fs/1.28758!RO_48.pdf.
  • [12] Hordoir, R., Dieterich, C., Basu, C., Dietze, H., Meier, H.E.M., 2013b. Freshwater outflow of the Baltic Sea and transport in the Norwegian current: a statistical correlation analysis based on a numerical experiment. Cont. Shelf Res. 64, 1-9, http://dx.doi.org/10.1016/j.csr.2013.05.006.
  • [13] Hordoir, R., Axell, L., Löptien, U., Dietze, H., Kuznetsov, I., 2015. Influence of sea level rise on the dynamics of salt inflows in the Baltic Sea. J. Geophys. Res. Ocean. 120, 6653-6668, http://dx.doi.org/10.1002/2014JC010642.
  • [14] Kikas, V., Lips, U., 2016. Upwelling characteristics in the Gulf of Finland (Baltic Sea) as revealed by Ferrybox measurements in 2007-2013. Ocean Sci. 12, 843-859, http://dx.doi.org/10.5194/os-12-843-2016.
  • [15] Lagemaa, P., 2012. Operational Forecasting in Estonian Marine Waters. TUT Press, Tallinn, http://digi.lib.ttu.ee/i/?714.
  • [16] Large, W. G., Yeager, S. G., 2004. Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. In: NCAR Technical Note, NCAR/TN-460+STR, CGD Division of the National Center for Atmospheric Research. , http://dx.doi.org/10.5065/D6KK98Q6 PDF 112 pp.
  • [17] Lehmann, A., Myrberg, K., 2008. Upwelling in the Baltic Sea — a review. J. Mar. Syst. 74, S3-S12, http://dx.doi.org/10.1016/j.jmarsys.2008.02.010.
  • [18] Leppäranta, M., Myrberg, K., 2009. Physical Oceanography of the Baltic Sea. Springer-Verlag, 378 pp.
  • [19] Lips, U., Lips, I., Liblik, T., Kikas, V., Altoja, K., Buhhalko, N., Rünk, N., 2011. Vertical dynamics of summer phytoplankton in a stratified estuary (Gulf of Finland, Baltic Sea). Ocean Dyn. 61, 903-915, http://dx.doi.org/10.1007/s10236-011-0421-8.
  • [20] Madec, G., the NEMO team, 2008. NEMO Ocean Engine, Institut Pierre-Simon Laplace (IPSL), France, note du Pôle de modélisation, No 27, 386 pp., https://www.nemo-ocean.eu/bibliography/documentation/.
  • [21] Maljutenko, I., Laanemets, J., Raudsepp, U., 2010. Long-term highresolution hydrodynamical model simulation in the Gulf of Finland. In: Baltic International Symposium (BALTIC), 2010 IEEE/OES US/EU. 1-7, http://dx.doi.org/10.1109/BALTIC.2010.5621641.
  • [22] Myrberg, K., Soomere, T., 2013. The Gulf of Finland, its hydrography and circulation dynamics. In: Preventive Methods for Coastal Protection, Springer, 181-222.
  • [23] Myrberg, K., Ryabchenko, V., Isaev, A., Vankevich, R., Andrejev, O., Bendtsen, J., Erichsen, A., Funkquist, L., Inkala, A., Neelov, I., Rasmus, K., Medina, M. R., Raudsepp, U., Passenko, J., Söderkvist, J., Sokolov, A., Kuosa, H., Anderson, T. R., Lehmann, A., Skogen, M. D., 2010. Validation of three-dimensional hydrodynamic models of the Gulf of Finland. Boreal Environ. Res. 15, 453-479.
  • [24] Palmén, E., 1930. Untersuchungen über die Strömungen in den Finnland umgebenden Meeren. Soc. Scient. Fenn., Comm. Phys.-Math. 12, 1-94, (in German).
  • [25] Raateoja, M., Setälä, O. (Eds.), 2016. The Gulf of Finland Assessment. Rep. Finnish Environ. Insti., Helsinki PDF 368 pp., http://hdl.handle.net/10138/166296.
  • [26] Soomere, T., Myrberg, K., Leppäranta, M., Nekrasov, A., 2008. The progress in knowledge of physical oceanography of the Gulf of Finland: a review for 1997-2007. Oceanologia 50 (3), 287-362.
  • [27] Soomere, T., Leppäranta, M., Myrberg, K., 2009. Highlights of the physical oceanography of the Gulf of Finland reflecting potential climate changes. Boreal Environ. Res. 14, 152-165.
  • [28] Soomere, T., Delpeche, N., Viikmäe, B., Quak, E., Meier, H. E. M., Doos, K., 2011. Patterns of current-induced transport in the surface layer of the Gulf of Finland. Boreal Environ. Res. 16, 49-63.
  • [29] Stålnacke, P., Grimvall, A., Sundblad, K., Tonderski, A., 1999. Estimation of riverine loads of nitrogen and phosphorus to the Baltic Sea, 1970-1993. Environ. Monit. Assess. 58, 173-200.
  • [30] Stipa, T., 2004. Baroclinic adjustment in the Finnish Coastal Current. Tellus A 56, 79-87.
  • [31] Suhhova, I., Pavelson, J., Lagemaa, P., 2015. Variability of currents over the southern slope of the Gulf of Finland. Oceanologia 57 (2), 132-143, http://dx.doi.org/10.1016/j.oceano.2015.01.001.
  • [32] Suursaar, Ü., Aps, R., 2007. Spatio-temporal variations in hydrophysical and-chemical parameters during a major upwelling event off the southern coast of the Gulf of Finland in summer 2006. Oceanologia 49 (2), 209-228.
  • [33] Troupin, C., Barth, A., Sirjacobs, D., Ouberdous, M., Brankart, J.-M., Brasseur, P., Rixen, M., Alvera-Azcárate, A., Belounis, M., Capet, A., Lenartz, F., Toussaint, M.-E., Beckers, J.-M., 2012. Generation of analysis and consistent error fields using the Data Interpolating Variational Analysis (Diva). Ocean Model. 52-53, 90-101, http://dx.doi.org/10.1016/j.ocemod.2012.05.002.
  • [34] Tuomi, L., Myrberg, K., Lehmann, A., 2012. The performance of the parameterisations of vertical turbulence in the 3D modelling of hydrodynamics in the Baltic Sea. Cont. Shelf Res. 50, 64-79.
  • [35] Vancoppenolle, M., Fichefet, T., Goosse, H., Bouillon, S., Madec, G., Maqueda, M. A. M., 2009. Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation. Ocean Model. 27, 33-53.
  • [36] Vankevich, R. E., Sofina, E. V., Eremina, T. E., Ryabchenko, V. A., Molchanov, M. S., Isaev, A. V., 2016. Effects of lateral processes on the seasonal water stratification of the Gulf of Finland: 3-D NEMO-based model study. Ocean Sci. 12, 987-1001, http://dx.doi.org/10.5194/os-12-987-2016.
  • [37] Westerlund, A., Tuomi, L., 2016. Vertical temperature dynamics in the Northern Baltic Sea based on 3D modelling and data from shallow-water Argo floats. J. Mar. Syst. 158, 34-44, http://dx.doi.org/10.1016/j.jmarsys.2016.01.006.
  • [38] Witting, R., 1912. Zusammenfassende Uebersicht der Hydrographie des Bottnischen und Finnischen Meerbusens und der Nördlichen Ostsee nach den Untersuchungen bis Ende 1910. Soc. Sci. Fenn. Finländische Hydr.-Biol. Untersuchungen, No. 7.
  • [39] Zhurbas, V., Laanemets, J., Vahtera, E., 2008. Modeling of the mesoscale structure of coupled upwelling/downwelling events and the related input of nutrients to the upper mixed layer in the Gulf of Finland, Baltic Sea. J. Geophys. Res. Ocean. 113 (C5), C05004, http://dx.doi.org/10.1029/2007JC004280.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50560d84-f020-4371-a5d2-1227cc3f7e8a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.