PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Energy-efficient walking over irregular terrain: a case of hexapod robot

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Adaptive locomotion over difficult or irregular terrain is considered as a superiority feature of walking robots over wheeled or tracked machines. However, safe foot positioning, body posture and stability, correct leg trajectory, and efficient path planning are a necessity for legged robots to overcome a variety of possible terrains and obstacles. Without these properties, any walking machine becomes useless. Energy consumption is one of the major problems for robots with a large number of Degrees of Freedom (DoF). When considering a path plan or movement parameters such as speed, step length or step height, it is important to choose the most suitable variables to sustain long battery life and to reach the objective or complete the task successfully. We change the settings of a hexapod robot leg trajectory for overcoming small terrain irregularities by optimizing consumed energy and leg trajectory during each leg transfer. The trajectory settings are implemented as a part of hexapod robot simulation model and tested through series of experiments with various terrains of differing complexity and obstacles of various sizes. Our results show that the proposed energy-efficient trajectory transformation is an effective method for minimizing energy consumption and improving overall performance of a walking robot.
Rocznik
Strony
645--660
Opis fizyczny
Bibliogr. 35 poz., fot., rys., tab., wzory
Twórcy
  • Vilnius Gediminas Technical University, Faculty of Electronics, Naugarduko g. 41, 03227 Vilnius, Lithuania
  • Vilnius Gediminas Technical University, Faculty of Electronics, Naugarduko g. 41, 03227 Vilnius, Lithuania
  • Vilnius Gediminas Technical University, Faculty of Electronics, Naugarduko g. 41, 03227 Vilnius, Lithuania
  • Vilnius Gediminas Technical University, Faculty of Electronics, Naugarduko g. 41, 03227 Vilnius, Lithuania
  • Kaunas University of Technology, Department of Multimedia Engineering, K. Baršausko 59-A338, LT-51423, Kaunas, Lithuania
  • Silesian University of Technology, Faculty of Applied Mathematics, Kaszubska 23, 44-100 Gliwice, Poland
  • Silesian University of Technology, Faculty of Applied Mathematics, Kaszubska 23, 44-100 Gliwice, Poland
Bibliografia
  • [1] Chen, W. H., Ren, G. J., Wang, J. H., Liu, D. (2014). An adaptive locomotion controller for a hexapod robot: Cpg, kinematics and force feedback. Science China Information Science., 57(11), 1-18.
  • [2] Li, R., Meng, H., Bai, S., Yao, Y., Zhang, J. (2018). Stability and gait planning of 3-UPU hexapod walking robot. Robotics, 7(3), 48.
  • [3] Tedeschi, F., Carbone, G. (2014). Design issues for hexapod walking robots. Robotics., 3(2), 181-206.
  • [4] Zhu, Y., Jin, B., Li,W., Li, S. (2014). Optimal design of hexapod walking robot leg structure based on energy consumption and workspace. Transactions of the Canadian Society for Mechanical Engineering, 38(3), 305-317.
  • [5] Wang, Z. Y., Ding, X. L., Rovetta, A. (2009). Analysis of typical locomotion of a symmetric hexapod robot. Robotica, 28(06), 893-907.
  • [6] Sheba, J. K., Elara, M., Martinez-Garcia, E., Le, T. P. (2016). Trajectory generation and stability analysis for reconfigurable klann mechanism based walking robot. Robotics, 5(3), 13.
  • [7] Kimura, H., Fukuoka, Y., Cohen A. H. (2007). Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts. The International Journal of Robotics Research, 26(5), 475-490.
  • [8] Asano, F., Yamakita, M., Kamamichi, N., Luo, Z. W. (2004). A novel gait generation for biped walking robots based on mechanical energy constraint. IEEE Transactions on Robotics and Automation, 20(3), 565-573.
  • [9] Asif, U., Iqbal, J. (2011). An approach to stable walking over uneven terrain using a reflex-based adaptive gait. Journal of Control Science and Engineering, 16.
  • [10] Asif, U. (2012). Improving the navigability of a hexapod robot using a fault-tolerant adaptive gait. International Journal of Advanced Robotic Systems, 9(2), 34.
  • [11] Zeng, Y., Li, J., Yang, S., Ren, E. (2018). A bio-inspired control strategy for locomotion of a quadruped robot. Applied Sciences, 8(1), 56.
  • [12] Juang, C. F., Yeh, Y. T. (2018). Multiobjective evolution of biped robot gaits using advanced continuous ant-colony optimized recurrent neural networks. IEEE Transactions on Cybernetics, 48(6), 1910-1922.
  • [13] Meng, G., Ya-nan, L., Qing-sheng, L., Ning, S. (2017). Optimization and simulation on key parameters of foot trajectory for a hydraulic quadruped robot. IEEE International Conference on Robotics and Biomimetics, ROBIO, Macau, 1454-1459.
  • [14] Walas, K., Kanoulas, D., Kryczka, P. (2016). Terrain classification and locomotion parameters adaptation for humanoid robots using force/torque sensing. 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), 133-140.
  • [15] Xiong, X., Worgotter, F., Manoonpong, P. (2016). Adaptive and energy efficient walking in a hexapod robot under neuromechanical control and sensorimotor learning. IEEE Transactions on Cybernetics, 46(11), 2521-2534.
  • [16] Kar, D. C., Kurien, I. K., Jayarajan, K. (2001). Minimum energy force distribution for a walking robot. Journal of Field Robotics, 18(2), 47-54.
  • [17] Roy, S. S., Pratihar, D. K. (2011). Dynamic modeling and energy consumption analysis of crab walking of a six-legged robot. 2011 IEEE Conference on Technologies for Practical Robot Applications (TePRA), 82-87.
  • [18] Kottege, N., Parkinson, C., Moghadam, P., Elfes, A., Singh, S.P.N. (2015). Energetics-informed hexapod gait transitions across terrains. 2015 IEEE International Conference on Robotics and Automation (ICRA), 5140-5147.
  • [19] Mahapatra, A., Roy, S. S., Bhavanibhatla, K., Pratihar, D. K. (2015). Energy-efficient inverse dynamic model of a hexapod robot. 2015 International Conference on Robotics, Automation, Control and Embedded Systems (RACE), 1-7.
  • [20] Zielinska, T. (2015). Walking machines for exploration-optimizing the energy spendings. 2015 10th International Workshop on Robot Motion and Control (RoMoCo), 124-129.
  • [21] Gonzalez de Santos, P., Garcia, E., Ponticelli, R., et al. (2009). Minimizing energy consumption in hexapod robots. Advanced Robotics, 23(6), 681-704.
  • [22] Roy, S. S., Pratihar, D. K. (2014). Kinematics, dynamics and power consumption analyses for turning motion of a six-legged robot. Journal of Intelligent & Robotic Systems, 74(3-4), 663.
  • [23] Lin, B. S., Song, S. M. (2001). Dynamic modeling, stability, and energy efficiency of a quadrupedal walking machine. Journal of Field Robotics, 18(11), 657-670.
  • [24] Estremera, J.,Waldron, K. J. (2008). Thrust control, stabilization and energetics of a quadruped running robot. The International Journal of Robotics Research, 27(10), 1135-1151.
  • [25] Vanderborght, B., Van Ham, R., Lefeber, D., et al. (2009). Comparison of mechanical design and energy consumption of adaptable, passive-compliant actuators. The International Journal of Robotics Research, 28(1), 90-103.
  • [26] Wu, X., Li, Y., Consi, T. R. (2010). Life extending minimum-time path planning for a hexapod robot. In: ASME 2010 Dynamic Systems and Control Conference; American Society of Mechanical Engineers, 809-816.
  • [27] Ackerman, J., Seipel, J. (2013). Energy efficiency of legged robot locomotion with elastically suspended loads. IEEE Transactions on Robotics, 29(2), 321-330.
  • [28] Gonzalez-Rodriguez, A.G., Gonzalez-Rodriguez, A., Castillo-Garcia, F. (2014). Improving the energy efficiency and speed of walking robots. Mechatronics, 24(5), 476-488.
  • [29] Parker, G., Zbeda, R. (2014). Learning area coverage for a self-sufficient hexapod robot using a cyclic genetic algorithm. IEEE Systems Journal, 8(3), 778-790.
  • [30] Mahapatra, A., Roy, S. S., Pratihar, D. K. (2019). Study on feet forces’ distributions, energy consumption and dynamic stability measure of hexapod robot during crabwalking. Applied Mathematical Modelling, 65, 717-744.
  • [31] Luneckas, M., Luneckas, T., Udris, D., et al. (2014). Hexapod robot energy consumption dependence on body elevation and step height. Elektronika ir Elektrotechnika, 20(7), 7-10.
  • [32] Luneckas, L. (2018). Investigation of Energy Efficiency of Hexapod Robot Locomotion Doctoral Dissertation. Vilnius Gediminas Technical University.
  • [33] Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7, 1-30.
  • [34] Zhang, S., Xing, Y., Hu, Y. (2018). Composite gait optimization method for a multi-legged robot based on optimal energy consumption. Journal of Chinese Space Science and Technology.
  • [35] Chun, Z., Mingjin, Y., Jian, C., et al. (2016). Energy consumption optimization model of agricultural hexapod robot with self-locking joints. Transactions of the Chinese Society of Agricultural Engineering, 32(18), 73-83.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5055a7d5-d69c-42f9-84cb-d96e74403837
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.