PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

An Empirical Model for the Ionospheric Global Electron Content Storm-Time Response

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
By analyzing the variations of global electron content (GEC) during geomagnetic storm events, the ratio “GEC/GECQT” is found to be closely correlated with geomagnetic Kp index and time weighted Dst index, where GECQT is the quiet time reference value. Moreover, the GEC/GECQT will decrease with the increase of the solar flux F10.7 index. Furthermore, we construct a linear model for storm-time response of GEC. Eighty-two storm events during 1999-2011 were utilized to calculate the model coefficients, and the performance of the model was tested using data of 8 storm events in 2012 by comparing the outputs of the model with the observed GEC values. Results suggest that the model can capture the characteristics of the GEC variation in response to magnetic storms. The component describing the solar activity influence shows a counteracting effect with the geomagnetic activity component; and the influence of Kp index causes an increase of GEC, while the time weighted Dst index causes a decrease of GEC.
Czasopismo
Rocznik
Strony
253--269
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
autor
  • School of Land Science and Technology, China University of Geosciences (Beijing), Beijing, China
autor
  • Department for Geodesy and Geoinformation Sciences, Technische Universität Berlin, Berlin, Germany
autor
  • Department for Geodesy and Geoinformation Sciences, Technische Universität Berlin, Berlin, Germany
autor
  • School of Land Science and Technology, China University of Geosciences (Beijing), Beijing, China
Bibliografia
  • Afraimovich, E.L., E.I. Astafieva, S.V. Voeykov, B. Tsegmed, A.P. Potekhin, and J.L. Rasson (2006a), An investigation of the correlation between ionospheric and geomagnetic variations using data from the GPS and INTERMAGNET networks, Adv. Space Res. 38, 11, 2332-2336 , DOI: 10.1016/j.asr.2006.01.012.
  • Afraimovich, E.L., E.I. Astafyeva, and I.V. Zhivetiev (2006b), Solar activity and global electron content, Doklady Earth Sci. 409, 2, 921-924, DOI: 10.1134/ S1028334X06060195.
  • Afraimovich, E.L., E.I. Astafyeva, A.V. Oinats, Yu.V. Yasukevich, and I.V. Zhivetiev (2008), Global electron content: a new conception to track solar activity, Ann. Geophys. 26, 2, 335-344, DOI: 10.5194/angeo-26-335-2008.
  • Araujo-Pradere, E.A., and T.J. Fuller-Rowell (2000), A model of a perturbed ionosphere using the auroral power as the input, Geofís. Int. 39, 1, 29-36.
  • Araujo-Pradere, E.A., T.J. Fuller-Rowell, and M.V. Codrescu (2002), STORM: An empirical storm-time ionospheric correction model. 1. Model description, Radio. Sci. 37, 5, 3-1-3-12, DOI: 10.1029/2001RS002467.
  • Astafyeva, E.I., E.L. Afraimovich, A.V. Oinats, Yu.V. Yasukevich, I.V. Zhivetiev (2008), Dynamics of global electron content in 1998-2005 derived from global GPS data and IRI modeling, Adv. Space Res. 42, 4, 763-769, DOI: 10.1016/j.asr.2007.11.007.
  • Berdermann, J., C. Borries, M.M. Hoque, and N. Jakowski (2012), Forecast of total electron content over Europe for disturbed ionospheric conditions. In: 9th European Space Weather Week, 5-9 November 2012, Brussels, Belgium.
  • Bergeot, N., I. Tsagouri, C. Bruyninx, J. Legrand, J.-M. Chevalier, P. Defraigne, Q. Baire, and E. Pottiaux (2013), The influence of space weather on ionospheric total electron content during the 23rd solar cycle, J. Space Weather Space Clim. 3, A25, DOI: 10.1051/swsc/2013047.
  • Buonsanto, M.J. (1999), Ionospheric storms –a review, Space Sci. Rev. 88, 3-4, 563- 601, DOI: 10.1023/A:1005107532631.
  • Forbes,J.M., S.E. Palo, and X. Zhang (2000), Variability of the ionosphere, J. Atmos. Sol.-Terr. Phys. 62, 8, 685-693, DOI: 10.1016/S1364-6826(00)00029-8.
  • Fuller-Rowell, T.J., M.V. Codrescu, R.J. Moffett, and S. Quegan (1994), Response of the thermosphere and ionosphere to geomagnetic storms, J. Geophys. Res. 99, A3, 3893-3914, DOI: 10.1029/93JA02015.
  • Gulyaeva, T.L., and I. Stanislawska (2008), Derivation of a planetary ionospheric storm index, Ann. Geophys. 26, 2645-2648, DOI: 10.5194/angeo-26-2645- 2008.
  • Gulyaeva, T.L., and I.S. Veselovsky (2012), Two-phase storm profile of global electron content in the ionosphere and plasmasphere of the Earth, J. Geophys. Res. 117, A9, A09324, DOI: 10.1029/2012JA018017.
  • Jakowski, N., S. Heise, S.M. Stankov, and K. Tsybulya (2006), Remote sensing of the ionosphere by space-based GNSS observations, Adv. Space Res. 38, 11, 2337-2343, DOI: 10.1016/j.asr.2005.07.015.
  • Jakowski, N., J. Mielich, C. Borries, L. Cander, A. Krankowski, B. Nava, and S.M. Stankov (2008), Large-scale ionospheric gradients over Europe observed in October 2003, J. Atmos. Sol.-Terr. Phys. 70, 15, 1894-1903, DOI: 10.1016/j.jastp.2008.03.020.
  • Lean, J.L., R.R. Meier, J.M. Picone, and J.T. Emmert (2011), Ionospheric total electron content: Global and hemispheric climatology, J. Geophys. Res. 116, A10, A10318, DOI: 10.1029/2011JA016567.
  • Li, S., J. Peng, W. Xu, and K. Qin (2013), Time series modeling and analysis of trends of daily averaged ionospheric total electron content, Adv. Space Res. 52, 5, 801-809, DOI: 10.1016/j.asr.2013.05.032.
  • Liu, L., W. Wan, B. Ning, and M. Zhang (2009), Climatology of the mean total electron content derived from GPS global ionospheric maps, J. Geophys. Res. 114, A6, A06308, DOI: 10.1029/2009JA014244.
  • Liu, L., W. Wan, Y. Chen, and H. Le (2011), Solar activity effects of the ionosphere: A brief review, Chin. Sci. Bull. 56, 12, 1202-1211, DOI: 10.1007/ s11434-010-4226-9.
  • Perrone, L., G. de Franceschi, and T.L. Gulyaeva (2001), The time-weighted magnetic indices ap(τ), PC(τ), AE(τ) and their correlation to the southern high latitude ionosphere, Phys. Chem. Earth C 26, 5, 331-334, DOI: 10.1016/ S1464-1917(01)00008-3.
  • Pietrella, M., and L. Perrone (2008), A local ionospheric model for forecasting the critical frequency of the F2 layer during disturbed geomagnetic and ionospheric conditions, Ann. Geophys. 26, 2, 323-334, DOI: 10.5194/ angeo-26- 323-2008.
  • Prölss, G.W. (2006), Ionospheric F-region storms: Unsolved problems. In: Proc. Meeting RTO-MP-IST-056 “Characterising the Ionosphere”, Neuilly-surSeine, France, Paper No. 10, 10-1–10-20.
  • She, C., W. Wan, and G. Xu (2008), Climatological analysis and modeling of the ionospheric global electron content, Chin. Sci. Bull. 53, 2, 282-288, DOI: 10.1007/s11434-007-0519-z.
  • Stankov, S.M., N. Jakowski, K. Tsybulya, and V. Wilken (2006), Monitoring the generation and propagation of ionospheric disturbances and effects on Global Navigation Satellite System positioning, Radio Sci. 41, 6, RS6S09, DOI: 10.1029/2005RS003327.
  • Stankov, S.M., K. Stegen, and R. Warnant (2010), Seasonal variations of storm-time TEC at European middle latitudes, Adv. Space Res. 46, 10, 1318-1325, DOI: 10.1016/j.asr.2010.07.017.
  • Trichtchenko, L., A. Zhukov, R. van der Linden, S.M. Stankov, N. Jakowski, I. Stanisławska, G. Juchnikowski, P. Wilkinson, G. Patterson, and A.W.P. Thomson (2007), November 2004 space weather events: Real time observations and forecasts, Space Weather 5, 6, S06001, DOI: 10.1029/ 2006SW000281.
  • Tsagouri, I., and A. Belehaki (2008), An upgrade of the solar-wind-driven empirical model for the middle latitude ionospheric storm-time response, J. Atmos. Sol.-Terr. Phys. 70, 16, 2061-2076, DOI: 10.1016/j.jastp.2008.09.010.
  • Tsagouri, I., A. Belehaki, G. Moraitis, and H. Mavromichalaki (2000), Positive and negative ionospheric disturbances at middle latitudes during geomagnetic storms, Geophys. Res. Lett. 27, 21, 3579-3582, DOI: 10.1029/ 2000GL003743.
  • Wang, X., J.K. Shi, G.J. Wang, G.A. Zherebtsov, and O.M. Pirog (2008), Responses of ionospheric foF2 to geomagnetic activities in Hainan, Adv. Space Res. 41, 4, 556-561, DOI: 10.1016/j.asr.2007.04.097.
  • Wrenn, G.L. (1987), Time-weighted accumulations ap(τ) and Kp(τ), J. Geophys. Res. 92, A9, 10125-10129, DOI: 10.1029/JA092iA09p10125.
  • Wu, J., and P.J. Wilkinson (1995), Time-weighted magnetic indices as predictors of ionospheric behaviour, J. Atmos. Terr. Phys. 57, 14, 1763-1770, DOI: 10.1016/0021-9169(95)00096-K.
  • Xu, G., W. Wan, C. She, and L. Du (2008), The relationship between ionospheric total electron content (TEC) over East Asia and the tropospheric circulation around the Qinghai–Tibet Plateau obtained with a partial correlation method, Adv. Space Res. 42, 1, 219-223, DOI: 10.1016/j.asr.2008.01.007.
  • Zhao, B., W. Wan, L. Liu, and T. Mao (2007), Morphology in the total electron content under geomagnetic disturbed conditions: results from global ionosphere maps, Ann. Geophys. 25, 7, 1555-1568, DOI: 10.5194/angeo-25- 1555-2007.
  • Zhao, B., W. Wan, L. Liu, K. Igarashi, M. Nakamura, L.J. Paxton, S.-Y. Su, G. Li, and Z. Ren (2008), Anomalous enhancement of ionospheric electron content in the Asian–Australian region during a geomagnetically quiet day, J. Geophys. Res. 113, A11, A11302, DOI: 10.1029/2007JA012987.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-504ecb6d-ab8c-4355-b744-f12cd3ed6e4b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.