PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Temperature behaviour of ceramic biocomposites investigated via hot-stage microscopy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, sol-gel bioactive glasses and β-TCP composites were investigated regarding their thermal behaviour, microstructure, and phase composition. Sol-gel bioactive glasses based on the CaO-SiO2 -P2O5 system of either a high SiO2 content (S2) or a high CaO content (A2) were mixed with the β-TCP at 25:75, 50:50 and 75:25 weight ratios. Basing on the HSM results, i.e. shrinkage curves, densification intervals and characteristic temperatures, the sintering temperatures of composites were indicated. Scanning electron microscopy and X-ray diffraction were used to determine the microstructure and phase composition of composites after sintering at selected temperatures, i.e. 1100°C and 1200°C. The SEM/EDX investigations proved the well-sintered and densified microstructure of the sintered composites. The chemistry of sol-gel bioactive glasses influenced both the thermal beha-viour and the phase composition of the composites. The dominant phases for A2-β-TCP materials were α-TCP, pseudowollastonite and β-TCP, while for S2-β-TCP – cristobalite, β-TCP, and α-TCP. However, the content of each phase varied, depending on the A2 or S2 content in the composite composition. Hot-stage microscopy provides useful information for selecting optimal sintering temperature in order to obtain well-sintered and strengthened material. Moreover, by a carefully selected combination of sol-gel bioactive glasses and β-TCP it is possible to obtain the materials with favorable phase composition with regard to biological activity.
Rocznik
Strony
22--28
Opis fizyczny
Bibliogr. 42 poz., rys., tab. zdj.
Twórcy
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, Al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, Al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] J.R. Jones, A. Clare: Bio-glasses: an introduction, Wiley, 2012.
  • [2] J.R. Jones, L.M. Ehrenfried, L.L. Hench: Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials 27 (2006) 964–973. doi:10.1016/J.BIOMATERIALS.2005.07.017.
  • [3] F. Baino, E. Fiume, M. Miola, E. Verné: Bioactive sol-gel glasses: Processing, properties, and applications. Int. J. Appl. Ceram. Technol. 15 (2018) 841–860. doi:10.1111/ijac.12873.
  • [4] Q.Z. Chen, I.D. Thompson, A.R. Boccaccini: 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials 27 (2006) 2414–2425. doi:10.1016/j.biomaterials.2005.11.025.
  • [5] K. Cholewa-Kowalska, J. Kokoszka, M. Łączka, et al.: Gel-derived bioglass as a compound of hydroxyapatite composites. Biomed. Mater. 4 (2009) 055007. doi:10.1088/1748-6041/4/5/055007.
  • [6] D. Bellucci, A. Sola, V. Cannillo: Hydroxyapatite and tricalcium phosphate composites with bioactive glass as second phase: State of the art and current applications. J. Biomed. Mater. Res. Part A. 104 (2016) 1030–1056. doi:10.1002/jbm.a.35619.
  • [7] G. Georgiou, J.C. Knowles: Glass reinforced hydroxyapatite for hard tissue surgery - Part 1: mechanical properties. Biomaterials 22 (2001) 2811–2815. doi:10.1016/S0142-9612(01)00025-4.
  • [8] J. Pawlik, M. Ziąbka, R. Lach, M. Łączka, K. Cholewa-Kowalska: Tailoring the porosity, mechanical and bioactive properties of sol-gel bioactive glasses, hydroxyapatite and titanium dioxide porous composites. J. Mech. Behav. Biomed. Mater. 87 (2018) 40–49. doi:10.1016/J.JMBBM.2018.07.012.
  • [9] M. Dziadek, B. Zagrajczuk, E. Menaszek, K. Cholewa-Kowalska: A new insight into in vitro behaviour of poly(ε-caprolactone)/bioactive glass composites in biologically related fluids. J. Mater. Sci. 53 (2018) 3939–3958. doi:10.1007/s10853-017-1839-2.
  • [10] P. Gentile, M. Mattioli-Belmonte, V. Chiono, et al.: Bioactive glass/polymer composite scaffolds mimicking bone tissue, J. Biomed. Mater. Res. Part A. 100A (2012) 2654–2667. doi:10.1002/jbm.a.34205.
  • [11] J. Filipowska, J. Pawlik, K. Cholewa-Kowalska, G. Tylko, E. Pamula, L. Niedzwiedzki, et al.: Incorporation of sol-gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties. Biomed. Mater. 9 (2014). doi:10.1088/1748-6041/9/6/065001.
  • [12] R. Ravarian, F. Moztarzadeh, M.S. Hashjin, S.M. Rabiee, P. Khoshakhlagh, M. Tahriri: Synthesis, characterization and bio-activity investigation of bioglass/hydroxyapatite composite. Ceram. Int. 36 (2010) 291–297. doi:10.1016/J.CERAMINT.2009.09.016.
  • [13] S. Padilla, J. Román, S. Sánchez-Salcedo, M. Vallet-Regí: Hydroxyapatite/SiO2-CaO-P2O5 glass materials: In vitro bioactivity and biocompatibility. Acta Biomater. 2 (2006) 331–342. doi:10.1016/J.ACTBIO.2006.01.006.
  • [14] D. Bellucci, A. Sola, A. Anesi, R. Salvatori, L. Chiarini, V. Cannillo:Bioactive glass/hydroxyapatite composites: Mechanical properties and biological evaluation. Mater. Sci. Eng. C. 51 (2015) 196–205. doi:10.1016/J.MSEC.2015.02.041.
  • [15] M. Bohner: Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury 31(4) (2000) 37–47. http://www.ncbi.nlm.nih.gov/pubmed/11270080
  • [16] W. Habraken, P. Habibovic, M. Epple, M. Bohner: Calcium phosphates in biomedical applications: materials for the future? Mater. Today 19 (2016) 69–87. doi:10.1016/J.MATTOD.2015.10.008.
  • [17] J.B. Park: Bioceramics: properties, characterizations, and applications, Springer, 2008.
  • [18] P.K. Chu, X. Liu: Biomaterials fabrication and processing handbook, CRC Press/Taylor & Francis, 2008.
  • [19] O.P. Filho, G.P. La Torre, L.L. Hench: Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J. Biomed. Mater. Res. 30 (1996) 509–514. doi:10.1002/(SICI)1097--4636(199604)30:4<509::AID-JBM9>3.0.CO;2-T.
  • [20] R. Xin, Q. Zhang, J. Chen, Y. Leng: Effects of porosity and crystallinity of glass ceramics on the in vivo bioactive response. Biomed. Mater. 3 (2008) 041001. doi:10.1088/1748-6041/3/4/041001.
  • [21] M. Plewinski, K. Schickle, et al.: The effect of crystallization of bioactive bioglass 45S5 on apatite formation and degradation. Dent. Mater. 29 (2013) 1256–1264. doi:10.1016/J.DENTAL.2013.09.016.
  • [22] H.-J. Ullrich, R.W. Cahn, P. Haasen, E.J. Kramer (Eds). Materials science and technology A comprehensive treatment. Vol. 2B: Characterization of Materials (Part II) Volume Editor: E. Lifshin. VCH Weinheim; New York; Basel; Cambridge; Tokyo 1994 doi:10.1002/crat.2170290603.
  • [23] S. (Severin) Amelinckx, Handbook of microscopy: applications in materials science, solid-state physics, and chemistry, VCH, 1997.
  • [24] A.R. Boccaccini, B. Hamann: Review In Situ high-temperature optical microscopy, J. Mater. Sci. 34 (1999) 5419–5436. doi:10.1023/A:1004706922530.
  • [25] H. Sholze: Influence of viscosity and surface tension on hot-stage microscopy measurements on glasses, Ber. Dtsch. Keram. Ges. 39 (1962) 63–68.
  • [26] M. Garcia-Valles, H.S. Hafez, I. Cruz-Matías, E. Vergés, M.H. Aly, J. Nogués, D. Ayala, S. Martínez: Calculation of viscosity–temperature curves for glass obtained from four wastewater treatment plants in Egypt, J. Therm. Anal. Calorim. 111 (2013) 107–114. doi:10.1007/s10973-012-2232-7.
  • [27] H. Scholze: Influence of viscosity and surface tension on hot-stage microscopy measurements on glasses. Ver. Dtsch. Keramische Gesellschaft. 391 (1962) 63–8.
  • [28] R.L. Dumitrache, I. Teoreanu: Melting behaviour of feldspar por-celain glazes. UPB Sci. Bull. Ser. B Chem. Mater. Sci. 68 (2006) 3–16.
  • [29] E. Mancuso, O.A. Bretcanu, M. Marshall, M.A. Birch, et al.: Novel bioglasses for bone tissue repair and regeneration: Effect of glass design on sintering ability, ion release and biocompatibility, Ma-ter. Des. 129 (2017) 239–248. doi:10.1016/J.MATDES.2017.05.037.
  • [30] S.S. Chon, L. Piraino, S. Mokhtari, E.A. Krull, A. Coughlan, Y. Gong, et al.: Synthesis, characterization and solubility analysis of amorpho-us SiO2-CaO-Na2O-P2O5 scaffolds for hard tissue repair, J. Non. Cryst. Solids. 490 (2018) 1–12. doi:10.1016/j.jnoncrysol.2018.03.006.
  • [31] F. Baino, E. Fiume, M. Miola, F. Leone, B. Onida, F. Laviano, R. Gerbaldo, E. Verné: Fe-Doped Sol-Gel Glasses and Glass-Ceramics for Magnetic Hyperthermia. Mater. (Basel, Switzerland). 11 (2018). doi:10.3390/ma11010173.
  • [32] M. Araújo, M. Miola, G. Baldi, J. Perez, E. Verné: Bioactive Glasses with Low Ca/P Ratio and Enhanced Bioactivity. Mater. (Basel, Switzerland). 9 (2016). doi:10.3390/ma9040226.
  • [33] F. Baino, M. Ferraris, O. Bretcanu, E. Verné, C. Vitale-Brovarone: Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution. J. Biomater. Appl. 27 (2013) 872–890. doi:10.1177/0885328211429193.
  • [34] A.W. Wren, A. Coughlan, K.E. Smale, S.T. Misture, B.P. Mahon, O.M. Clarkin, M.R. Towler: Fabrication of CaO–NaO–SiO2/TiO2scaffolds for surgical applications, J. Mater. Sci. Mater. Med. 23 (2012) 2881–2891. doi:10.1007/s10856-012-4746-8.
  • [35] J. Vecstaudza, M. Gasik, J. Locs: Amorphous calcium pho-sphate materials: Formation, structure and thermal behaviour. J. Eur. Ceram. Soc. 39 (2019) 1642–1649. doi:10.1016/J.JEUR-CERAMSOC.2018.11.003.
  • [36] V.O. Soares, J.K.M.B. Daguano, C.B. Lombello, O.S. Bianchin,L.M.G. Gonçalves, E.D. Zanotto: New sintered wollastonite glass-ceramic for biomedical applications, Ceram. Int. 44 (2018) 20019–20027. doi:10.1016/J.CERAMINT.2018.07.275.
  • [37] J. Pawlik, M. Ziąbka, R. Lach, M. Łączka, K. Cholewa-Kowalska: Tailoring the porosity, mechanical and bioactive properties of sol-gel bioactive glasses, hydroxyapatite and titanium dioxide porous composites. J. Mech. Behav. Biomed. Mater. 87 (2018) 40–49. doi:10.1016/j.jmbbm.2018.07.012.
  • [38] J. Pawlik, M. Widziołek, K. Cholewa-Kowalska, M. Łączka, A.M. Osyczka: New sol-gel bioactive glass and titania composites with enhanced physico-chemical and biological properties. J. Biomed. Mater. Res. - Part A. 102 (2014). doi:10.1002/jbm.a.34903.
  • [39] M. Łączka, K. Cholewa, A. Łączka-Osyczka: Gel-derived powders of CaO-P2O5-SiO2 system as a starting material to production of bioactive ceramics. J. Alloys Compd. 248 (1997) 42–51. doi:10.1016/S0925-8388(96)02648-5.
  • [40] M. Łączka, K. Cholewa-Kowalska, K. Kulgawczyk, M. Klisch, W. Mozgawa: Structural examinations of gel-derived materials of the CaO-P2O5-SiO2 system. J. Mol. Struct. 511–512 (1999) 223–231. doi:10.1016/S0022-2860(99)00163-5.
  • [41] A.M. Pietak, J.W. Reid, M.J. Stott, M. Sayer: Silicon substitution in the calcium phosphate bioceramics, Biomaterials. 28 (2007) 4023–4032. doi:10.1016/J.BIOMATERIALS.2007.05.003.
  • [42] J. Duncan, S. Hayakawa, A. Osaka, J.F. MacDonald, J.V. Hanna, J.M.S. Skakle, I.R. Gibson: Furthering the understanding of silicate-substitution in α-tricalcium phosphate: An X-ray diffra-ction, X-ray fluorescence and solid-state nuclear magnetic resonance study, Acta Biomater. 10 (2014) 1443–1450. doi:10.1016/j.actbio.2013.11.014
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-504b2978-0358-4783-9915-651a2995a372
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.