Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Through the finite element method, the finite element models of three kinds of buckling-restrained brace components: cross-shaped square steel tube support, cross-shaped circular steel tube support, and circular steel tube support are established. The hysteretic performance of buckling-restrained braces under cyclic loading is analyzed, and the influence of component parameters on the mechanical performance of three kinds of buckling-restrained braces is further analyzed. The results show that the three types of buckling restrained braces have good hysteretic energy dissipation performance, and the cross-shaped square steel tube brace has the best hysteretic energy dissipation performance. The influence of the restraint stiffness ratio of the buckling-restrained brace on the mechanical properties of the three types of buckling-restrained braces is consistent.With the increase of the restraint ratio, the buckling-restrained brace reaches full-section yield. The increase of the width-thickness ratio of the inner core element will cause the yield lag of the buckling-restrained brace, while the lower width-thickness ratio of the inner core element will cause excessive stress concentration. Therefore, it is suggested that the width-thickness ratio of the inner core element should be between 5 and 10. The initial imperfection and connection stiffness of buckling-restrained braces have little effect on the bearing capacity of buckling-restrained braces.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
577--594
Opis fizyczny
Bibliogr. 26 poz., il., tab.
Twórcy
autor
- Department of Architecture and Civil Engineering, Zhejiang Tongji Vocational College of Science and Technology, Hangzhou, P.R. China
autor
- Department of Architecture and Civil Engineering, Zhejiang Tongji Vocational College of Science and Technology, Hangzhou, P.R. China
autor
- College of Civil and Transportation Engineering, Hohai University, Nanjing, P.R. China
autor
- JSTI GROUP, Nanjing, P.R. China
autor
- College of Civil and Transportation Engineering, Hohai University, Nanjing, P.R. China
Bibliografia
- [1] D.Y. Zhang, X. Li, W.M. Yan, W.C. Xie, and M.D. Pandey, “Stochastic seismic analysis of a concrete-filled steel tubular (CFST) arch bridge under tridirectional multiple excitations”, Engineering Structures, vol. 52, pp. 355-371, 2013, doi: 10.1016/j.engstruct.2013.01.031.
- [2] M. Iwata and M. Murai, “Buckling-restrained brace using steel mortar planks; performance evaluation as a hysteretic damper”, Earthquake Engineering & Structural Dynamics, vol. 35, no. 14, pp. 1807-1826, 2006, doi: 10.1002/eqe.608.
- [3] T. Usami, Z. Lu, and H. Ge, “A seismic upgrading method for steel arch bridges using buckling-restrained braces”, Earthquake Engineering & Structural Dynamics, vol. 34, no. 4-5, pp. 471-496, 2005, doi: 10.1002/eqe.442.
- [4] T. Yoshino and Y. Karino, “Experimental Study on Shear Wall With Braces: Part 2”, in Summaries of Technical Papers of Annual Meeting, Structural Engineering Fascicle, vol. 11. Architectural Institute of Japan, 1971, pp. 403-404.
- [5] M.Wakabayashi, T.Nakarnura, A. Kashibara, T. Morizono, and H.Yokoyama, “Experiment Study of Elastoplastic Properties of Precast Concrete Wall Panels with Built-Insulating Braces”, in Summaries of Technical Papers of Annual Meeting, vol. 104121044: Architectural Institute of Japan, 1973, pp. 1041-1044, 1973.
- [6] K. Kimura and T.Y. Takeda, “Tests on Braces Encased by Mortar In-filled Steel Tubes”, in Summaries of Technical Papers of Annual Meeting, vol. 1041. Architectural Institute of Japan, 1976, pp. 1041-1042.
- [7] M. Fujimoto, A. Wada, E. Sacki, A. Watanabe, and Y. Hitomi, “A Study on the Unbonded Steel Diagonal Braces”, Journal of Structural and Construction Engineering, vol. 34, pp. 249-258, 1988.
- [8] S. Kuwahara, M. Tada, et al., “A study on Stiffening Capacity of Double-Tube Members”, Journal of Structural and Construction Engineering, vol. 445, pp. 151-158, 1993, doi: 10.3130/aijsx.445.0_151.
- [9] M. Iwata, T. Kato, and A. Wada, “Buckling-Restrained Braces as Hysteretic Dampers”, in STESSA 2000: Behaviour of Steel Structures in Seismic Areas. CRC Press, 2000, pp. 33-38.
- [10] P. Clark, I. Aiken, K. Kasai, E. Ko, and I. Kimura, “Design Procedures for Buildings Incorporating Hysteretic Damping Devices”, in Proceedings, 69th Annual Convention, Structural Engineers Association of California, Santa Barbara, Sacramento, CA, 1999.
- [11] Y. Koetaka, H. Nakamura, and O. Tsuyita, “Experimental Study on Buckling Restrained Braces”, in Proceedings of Sixth Pacific Structural Steel Conference. Beijing, China, 2001, pp. 15-17.
- [12] R. Sabelli, R.S. Mahin, and C. Chang, “Seismic demands on steel braced frame building with buckling-restrained braces”, Engineering Structures, vol. 25, no. 5, pp. 655-666, 2003, doi: 10.1016/S0141-0296(02)00175-X.
- [13] J. Kim and H. Choi, “Behavior and design of structures with buckling-restrained braces”, Engineering Structures, vol. 26, no. 6, pp. 693-706, 2004, doi: 10.1016/j.engstruct.2003.09.010.
- [14] C. C. Chen, S. Y. Chen, and J. J. Liaw, “Application of low yield strength steel on controlled plastification ductile concentrically braced frames”, Canadian Journal of Civil Engineering, vol. 28, no. 5, pp. 823-836, 2001, doi: 10.1139/l01-044.
- [15] J. Kim and H. Choi, “Behavior and design of structures with buckling-restrained braces”, Engineering Structures, vol. 26, no. 6, pp. 693-706, 2004, doi: 10.1016/j.engstruct.2003.09.010.
- [16] Y. Wang, L. Ibarra, and C. Pantelides, “Collapse capacity of reinforced concrete skewed bridges retrofitted with buckling-restrained braces”, Engineering Structures, vol. 184, pp. 99-184, 2019, doi: 10.1016/j.engstruct.2019.01.033.
- [17] Z. Jiang, Y. Guo, B. Zhang, and X. Zhang, “Influence of design parameters of buckling-restrained brace on its performance”, Journal of Constructional Steel Research, vol. 105, pp. 139-150, 2015, doi: 10.1016/j.jcsr.2014.10.024.
- [18] H. Abedini, S.R.H. Vaez, and A. Zarrineghbal, “Optimum design of buckling-restrained braced frames”, Structures, vol. 25, pp. 99-112, 2020, doi: 10.1016/j.istruc.2020.03.004.
- [19] N. Hoveidae and S. Radpour, “Performance evaluation of buckling-restrained braced frames under repeated earthquakes”, Bulletin of Earthquake Engineering, vol. 19, pp. 241-262, 2021, doi: 10.1007/s10518-020-00983-0.
- [20] P. Castaldo, E. Tubaldi, F. Selvi, and L. Gioiella, “Seismic performance of an existing RC structure retrofitted with buckling restrained braces”, Journal of Building Engineering, vol. 33, 2020, doi: 10.1016/j.jobe.2020.101688.
- [21] M.R. Eatherton, L.A. Fahnestock, and D.J. Miller, “Computational study of self-centering buckling-restrained braced frame seismic performance”, Earthquake Engineering & Structural Dynamics, vol. 43, no. 13, pp. 1897-1914, 2014, doi: 10.1002/eqe.2428.
- [22] R. Rahnavard, M. Naghavi, M. Aboudi, and M. Suleiman, “Investigating modeling approaches of bucklingrestrained braces under cyclic loads”, Case Studies in Construction Materials, vol. 8, pp. 476-488, 2018, doi: 10.1016/j.cscm.2018.04.002.
- [23] M. Iwata, M. Midorikawa, and K. Koyano, “Buckling-restrained brace with high structural performance”, Steel construction, vol. 11, no. 1, pp. 3-10, 2018, doi: 10.1002/stco.201810006.
- [24] M. Naghavi, R. Rahnavard, R.J. Thomas, and M. Malekinejad, “Numerical evaluation of the hysteretic behavior of concentrically braced frames and buckling restrained brace frame systems”, Journal of Building Engineering, vol. 22, pp. 415-428, 2019, doi: 10.1016/j.jobe.2018.12.023.
- [25] C. Avci-Karatas, O.C. Celik, and S.O. Eruslu, “Modeling of buckling restrained braces (BRBs) using fullscale experimental data“, KSCE Journal of Civil Engineering, vol. 23, no. 10, pp. 4431-4444, 2019, doi: 10.1007/s12205-019-2430-y.
- [26] D. Wieczorek, K. Zima and E. Plebankiewicz, “Expert studies on the impact of risk on the life cyclecosts of buildings”, Archives of Ciyil Engineering, vol. 69, no. 4, pp. 105-123, 2023, doi: 10.24425/ace.2023.147650.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-504a8ea2-b845-4ef5-9c9d-87e9f0c55427
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.