PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

CuO–water mhd mixed convection analysis and entropy generation minimization in double-lid–driven u-shaped enclosure with discrete heating

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study explores magnetic nanoliquid mixed convection in a double lid–driven U-shaped enclosure with discrete heat-ing using the lattice Boltzmann method (LBM) numerical method. The nanoliquid thermal conductivity and viscosity are calculated using the Maxwell and Brinkman models respectively. Nanoliquid magnetohydrodynamics (MHD) and mixed convection are analyzed and entropy generation minimisation has been studied. The presented results for isotherms, stream isolines and entropy generation describe the interaction between the various physical phenomena inherent to the problem including the buoyancy, magnetic and shear forces. The operating parameters’ ranges are: Reynolds number (Re: 1–100), Hartman number (Ha: 0–80), magnetic field inclination (γ: 0°–90°), nanoparticles volume fraction (ϕ: 0–0.04) and inclination angle (α: 0°–90°). It was found that the 𝑁𝑢𝑚 and the total entropy generation augment by increasing Re, ϕ: and γ. conversely, an opposite effect was obtained by increasing Ha and α. The optimum magnetic field and cavity inclination angles to maximum heat transfer are γ = 90° and α = 0.
Rocznik
Strony
112--123
Opis fizyczny
Bibliogr. 53 poz., rys., tab., wykr.
Twórcy
  • Research Lab, Technology Energy and Innovative Materials, Faculty of Sciences, University of Gafsa, Gafsa 2112, Tunisia
autor
  • Research Lab, Technology Energy and Innovative Materials, Faculty of Sciences, University of Gafsa, Gafsa 2112, Tunisia
  • UR22ES12: Modeling Optimization and Augmented Engineering, ISLAIB, University of Jendouba, Beja 9000, Tunisia
  • Research Lab, Technology Energy and Innovative Materials, Faculty of Sciences, University of Gafsa, Gafsa 2112, Tunisia
Bibliografia
  • 1. Khan J A, Mustafa M, Hayat T, Alsaedi A. Three-dimensional flow of nanofluid over a nonlinearly stretching sheet: An application to solar energy. Int. J. Heat Mass Transfer. 2015; 86:158-164.
  • 2. Ganvir B, Walke V, Kriplani M. Heat transfer characteristics in nanofluid-A review. Rene. Sust. Energy Reviews. http://dx.doi.org/10.1016/j.rser.2016.11.010
  • 3. Bigdeli MB, Fasano M, Cardellini A, Chiavazzo E, Asinari P. A review on the heat and mass transfer phenomena in nanofluid coolants with special focus on automotive applications. Rene. Sust. Energy Reviews. 2016;60:1615–1633.
  • 4. Assel S, Shan Y, Jiyun Z, Wu J M, Leong KC. Optimization and comparison of double-layer and double-side micro-channel heat sinks with nanofluid for power electronics cooling. Applied Thermal Engineering. 2014;65:124–34.
  • 5. Rafati M, Hamidi AA, Niaser S. Application of nanofluid in computer cooling systems (heat transfer performance of nanofluid). Applied Thermal Engineering. 2012;45:9–14.
  • 6. Yuan LC, Chang WJ, Chieh CT. Analysis of suspension and heat transfer characteristics of Al2O3 nanofluid prepared through ultrasonic vibration. Appl Energy. 2011;88:4527–33.
  • 7. Şahin S, Demir H. Numerical Solution Of Natural Convective Heat Transfer Under Magnetic Field Effect. Acta Mechanica et Automatica. 2019;13(1).
  • 8. Xuan Y, Duan H, Li Q. Enhancement of solar energy absorption using a plasmonic nanofluid based on TiO2/Ag composite nanoparticles. R.S.C. Adv. 2014; 4: 16206.
  • 9. Bhosale GH, Boiling CHF. Enhancement with Al2O3–CuO/H2O hybrid nanofluid, Int. J. Eng. Res. Technol. 2013; 2:946–50.
  • 10. Selvakumar P, Suresh S. Use of Al2O3–Cu/water hybrid nanofluid in an electronic heat sink, IEEE Trans. Compon. Packag. Manuf. Technol. 2 (2012) 1600–7.
  • 11. Duangthongsuk W, Wongwises S. An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime. Int. J. Heat Mass Transfer. 2010; 53:334–44.
  • 12. Sundar LS, Naik MT, Sharma KV, Singh MK, Siva Reddy TC. Experimental investigation of forced convection heat transfer and friction factor in a tube with Fe3O4 magnetic nanofluid. Exp. Therm. Fluid. Sci. 2012; 37:65–71.
  • 13. Aljabair S. Review of computational multi-phase approaches of nanofluids filled systems. Thermal Science and Engineering Progress. 2022; 28: 101175.
  • 14. Mliki B, Belgacem N, Abbassi M A, Kamel G, Omri A, Entropy Generation and Heat Transfer of Cu–Water Nanofluid Mixed Convection in a Cavity. Int. J. of Mech. Aero. Ind. Mecha. And Manufa. Engin. 2014; 8:2237–2143.
  • 15. Sheremet MA, Pop I. Mixed convection in a lid-driven square cavity filled by a nanofluid: Buongiorno mathematical model. Applied Mathematics and Computation. 2015; 266: 792-808.
  • 16. Nayak RK, Bhattacharyya S, Pop I. Numerical study on mixed convection and entropy generation of Cu–water nanofluid in a differentially heated skewed enclosure. Int. J. Heat Mass Transfer. 2015; 85: 620–634.
  • 17. Sourtiji E, Bandpy MG, Ganji D, Hosseinizadeh S. Numerical analysis of mixed convection heat transfer of Al2O3-water nanofluid in a ventilated cavity considering different positions of the outlet port. Powder Technology. 2014; 262:71-81.
  • 18. Toumi M, Bouzit M, Bouzit F, Mokhefi A. MHD Forced Convection Using Ferrofluid Over A Backward Facing Step Containing A Finned Cylinder. Acta Mechanica et Automatica . DOI: 10.2478/ama-2022-0009 (2021).
  • 19. Djebali R. Mesoscopic study of mixed convection and heat transfer due to crescent shape hot source under magnetic field and Joule effect. Romanian Reports in Physics. 2021; 72: 106.
  • 20. Ali SA , Sahira LE, Alesbe I. Mixed convection in sinusoidal lid driven cavity with non-uniform temperature distribution on the wall utilizing nanofluid. Heliyon. 2021; 7(5):06907.
  • 21. Moumni H, Welhezi H, Djebali R, Sediki E. Accurate finite volume investigation of nanofluid mixed convection in two-sided lid driven cavity including discreteheat sources. Applied Mathematical Modelling. 2015; 39 : 4164-4179.
  • 22. Aljabair S, Mohammed AA, Alesbe I. Natural convection heat transfer in corrugated annuli with H2O-Al2O3 nanofluid. 2020; 6(11): e05568A.
  • 23. Mahmoudi H, Pop I, Shahi M. Efect of magnetic feld on natural convection in a triangular enclosure flled with nanofuid. Int. J. of Termal Sciences. 2012; 59 :126–140.
  • 24. Mliki B, Abbassi M A, Omri A, Zeghmati B. Effects of nanoparticles Brownian motion in a linearly/sinusoidally heated cavity with MHD natural convection in the presence of uniform heat generation/absorption. Powder Technology. 2016; 295: 69–83.
  • 25. Alesbe I, Ibrahim SH, Aljabair S. Mixed convection heat transfer in multi-Lid- driven trapezoidal annulus filled with hybrid nanofluid. Journal of Physics: Conference Series. 2021; 1973:012065.
  • 26. Hussain S, Mehmood K, Sagheer M. MHD mixed convection and entropy generation of water-alumina nanofluid flow in a double lid driven cavity with discrete heating. J of Magn. and Magn. Mater. DOI: 10.1016/j.jmmm.2016.06.006, 2016.
  • 27. Shirvan KM, Mamourian M, Mirzakhanlari S, Moghiman M. Investigation on effect of magnetic field on mixed convection heat transfer in a ventilated square cavity, Procedia Engineering 127 (2015) 1181-1188.
  • 28. Pordanjani AH, Aghakhani S. Numerical Investigation of Natural Convection and Irreversibilities between Two Inclined Concentric Cylinders in Presence of Uniform Magnetic Field and Radiation. Heat Transfer Engineering. 2021: 1-21.
  • 29. Aghakhania S , Pordanjani AH, Afrand M, Farsani A K, Karimi N, Sharifpur M. Entropy generation and exergy analysis of Ag–MgO/ water hybrid nanofluid within a circular heatsink with different number of outputs. International Journal of Thermal Sciences. 2023; 184: 107891.
  • 30. Mliki B, Abbassi MA, Omri A, Zeghmati B. Lattice Boltzmann analysis of MHD natural convection of CuO-water nanofluid in inclined C-shaped enclosures under the effect of nanoparticles Brownian motion. Powder Technology. doi: 10.1016/j.powtec.2016.11.054
  • 31. Kumar A, Singh AK, Chandran P, Sacheti NC. Effect of perpendicular magnetic field on free convection in a rectangular cavity. Sult. Qa. Uni. J. for Sc. 2015; 20(2):149-59.
  • 32. Mliki B, Abbassi MA, Omri A, Zeghmati B. Augmentation of natural convective heat transfer in linearly heated cavity by utilizing nanofluids in the presence of magnetic field and uniform heat generation/absorption. Powder Technology. 2015; 284:312–325.
  • 33. Mliki B, Abbassi MA, Omri A. Lattice Boltzmann simulation of natural convection in an L-shaped enclosure in the presence of nanofluid. Eng. Sc. and Tech. an Int. J. 2015;18:503–511.
  • 34. Mliki B, Abbassi MA, Omri A. Lattice Boltzmann Simulation of MHD Double Dispersion Natural Convection in a C-shaped Enclosure in the Presence of a Nanofluid. F. Dyn. and Mat. Proce. 2015;11(1): 87-114.
  • 35. Mliki B, Abbassi MA, Omri A, Zeghmati B. Effectsof nanoparticles Brownian motion in a linearly/sinusoidally heated cavity with MHD natural convection in the presence of uniform heat generation/ absorption. Powder Technology. 2016; 295:69–83.
  • 36. Brinkman HC. The viscosity of concentrated suspensions and solutions. Journal of Chemical Physics. 1952; 20 :571-581.
  • 37. Qian YH, Humières D, Lallemand P. Lattice BGK models for Navier-Stokes equation. Europhysics Letters (Epl)). 1992; 17(6): 479.
  • 38. Peng Y, Shu C, Chew YT. Simplified thermal lattice Boltzmann model for incompressible thermal flows. Physical Review. 2003; 68(2): 026701.
  • 39. Ghasemi B, Aminossadati SM, Raisi A. Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int. J. Therm. Sci. 2011; 50:1748–1756.
  • 40. Lai FH, Yang YT. Lattice Boltzmann simulation of natural convection heat transfer of Al2O3/water nanofluids in a square enclosure, Int. J. Therm. Sci. 2011; 50:1930-1941.
  • 41. Talebi F, Mahmoudi AH, Shahi M. Numerical study of mixed convection flows in a square lid-driven cavity utilizing nanofluid. International Communications in Heat and Mass Transfer. 2010; 37 : 79–90.
  • 42. Djebali R, Ganaoui ME, Pateyron B. A lattice Boltzmann-based investigation of powder in-flight characteristics during APS process. part I: Modelling and validation. Progress in Computational Fluid Dynamics. 2012; 12 (4):270-278.
  • 43. Djebali R, Ganaoui ME, Pateyron B. A lattice Boltzmann based investigation of powder in-flight characteristics during APS process; part II: Effects of parameter dispersions at powder injection. Surface and Coatings Technology. 2013; 220: 157-163.
  • 44. Djebali R, Elganaoui M, Jaouabi A, Pateyron B. Scrutiny of spray jet and impact characteristics under dispersion effects of powder injection parameters in APS process; International Journal of Thermal Sciences, 100(2016), pp. 229-239.
  • 45. Naffouti T, Djebali R. Natural convection flow and heat transfer in square enclosure asymetrically heated from below: A lattice Boltzmann comprehensive study. Computer Modeling in Engineering and Sciences, 2012; 88 (3):211-227.
  • 46. Abbassi MA, Djebali R, Guedri K. Effects of heater dimensions on nanofluid natural convection in a heated incinerator shaped cavity containing a heated block. Journal of Thermal Engineering. 2018; 4 (3):2018-2036.
  • 47. Abbassi MA, Safaei MR, Djebali R, Guedri K, Zeghmati B, Alrashed AA. LBM simulation of free convection in a nanofluid filled incinerator containing a hot block. Int. Journal of Mechanical Sciences. 2018; 148:393-408.
  • 48. Djebali R, Jaouabi A, Naffouti T, Abboudi S. Accurate LBM appraising of pin-fins heat dissipation performance and entropy generation in enclosures as application to power electronic cooling. International Journal of Numerical Methods for Heat and Fluid Flow. 2020; 30 (2):742-768.
  • 49. Djebali R, ElGanaoui M, Naffouti T. A 2D Lattice boltzmann full analysis of MHD convective heat transfer in saturated porous square enclosure. Computer Modeling in Engineering and Sciences. 2012; 84 (6):499-527.
  • 50. Djebali R. Numerical analysis of nanofluid cooling efficiency of hot multishaped cylinder in vertical porous channel; Romanian Journal of Physics, 65, 122 (2020).
  • 51. Ferhi M, Djebali R, Mebarek-Oudina F, Nidal H, Abboudi S. MHD free convection through entropy generation analysis of eco-friendly nanoliquid in a divided L-shaped heat exchanger with LBM simulation. Journal of Nanofluids. 2022; 11 (1):99–112.
  • 52. Ferhi M, Djebali R. Appraising conjugate heat transfer, heatlines visualization and entropy generation of Ag-MgO/H2O hybrid nanofluid in a partitioned medium. International Journal of Numerical Methods for Heat and Fluid Flow. 2020; 30(10):4529-4562.
  • 53. Ferhi M, Djebali R. Heat transfer appraising and second law analysis of Cu-water nanoliquid filled microchannel: Slip flow regime. Romanian Journal of Physics. 2022; 67:605.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50487c1e-6b84-4ffb-b38b-7b60394e75cd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.