PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fundamentals of quantum computing

Autorzy
Identyfikatory
Warianty tytułu
PL
Podstawy obliczeń kwantowych
Języki publikacji
EN
Abstrakty
EN
The basic properties of quantum systems allowing potential use for accelerating quantum computing are discussed. The theoretical, computational capabilities of quantum computers and their limitations are described. Basic quantum algorithms allowing acceleration of calculations are discussed.
PL
Omówione zostały podstawowe własności układów kwantowych po zwalające na potencjalne wykorzystanie dla przyśpieszenia obliczeń kwantowych. Opisano teoretyczne możliwości obliczeniowe kom puterów kwantowych i ich ograniczenia. Omówiono podstawowe algorytmy kwantowe pozwalające na przyspieszenie obliczeń.
Rocznik
Strony
6--11
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
  • Center of Theoretical Physics PAS, Warsaw, Poland
  • Warsaw University of Technology, Warsaw, Poland
Bibliografia
  • [1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge Univ. Press, 2001.
  • [2] E. Schrödinger, Probability relations between separated systems, Proc. Cambridge Philos. Soc. 31, 553 (1935); 32, 446 (1936).
  • [3] R. Horodecki, et al., Quantum entanglement, Reviews of Modern Physics, 81, 865 (2009).
  • [4] N. Brunner et al., Bell nonlocality, Reviews of Modern Physics, 86, 419 (2014).
  • [5] A. K. Ekert, Quantum cryptography based on Bell’s theorem, Physical Review Letters, 67, 661 (1991).
  • [6] H. M. Wiseman, S. J. Jones, and A. C. Doherty, Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox, Physical Review Letters, 98, 140402 (2007).
  • [7] S. Kochen and E. P. Specker, The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics, 17, 59 (1968).
  • [8] M. Howard et al., Contextuality supplies the ‘magic’ for quantum computation, Nature, 510(7505), 351 (2014).
  • [9] D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum computer, Proceedings of the Royal Society, 400, 97 (1985).
  • [10] A. Barenco et al., Elementary gates for quantum computation, Physical Review A, 52, 3457 (1995).
  • [11] D. Deutsch and R. Jozsa, Rapid solutions of problems by quantum computation, Proceedings of the Royal Society of London A. 439, 553 (1992).
  • [12] R. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures and public-key cryptosystems, Communications of ACM, 21, 121 (1978).
  • [13] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Review, 41, 303 (1999).
  • [14] L. Grover, Quantum mechanics helps in searching for a needle in a haystack, Physical Review Letters 79, 325 (1997).
  • [15] A. Montanaro, Quantum algorithms: an overview, npj Quantum Information, 2, 1 (2016).
  • [16] S. Jordan, The quantum algorithm zoo, http://math.nist.gov/quantum/zoo/.
  • [17] Y. K. Itakura, Quantum Algorithm for Commutativity Testing of a Matrix Set, https://arxiv.org/abs/quant-ph/0509206
  • [18] D. J. Bernstein, Proving primality in essentially quartic random time, Mathematics of Computation, 76, 389 (2007).
  • [19] H. F. Chau and H.-K. Lo, Primality test via quantum factorization, International Journal of Modern Physics C, 8, 131 (1997).
  • [20] W. H. Zurek, Decoherence and the transition from quantum to classical, Physics Today, 44, 36 (1991).
  • [21] D. P. DiVincenzo, The Physical Implementation of Quantum Computation, Fortschritte der Physik 48, 771 (2000).
  • [22] C. D. Bruzewicz et al., Trapped-ion quantum computing: Progress and challenges, Applied Physics Reviews, 6 (2019).
  • [23] M. Kjaergaard, et al., Superconducting qubits: Current state of play, Annual Review of Condensed Matter Physics 11, 369 (2020).
  • [24] L. Henriet et al., Quantum computing with neutral atoms. Quantum, 4, 327 (2020).
  • [25] S. Slussarenko and G. J. Pryde. Photonic quantum information processing: a concise review, Applied Physics Reviews, 6, 041303 (2019).
  • [26] L. M. Vandersypen et al., Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance, Nature, 414, 883 (2001).
  • [27] D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots, Physical Review A, 57, 20 (1988).
  • [28] C. Schreyvogel et al., Active charge state control of single NV centres in diamond by in-plane Al-Schottky junctions. Scientific Reports, 5, 12160 (2015).
  • [29] J. Zhang et al., Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator, Nature 551, 601-604 (2017).
  • [30] F. Arute et al. Quantum supremacy using a programmable su perconducting processor, Nature, 574, 505 (2019).
Uwagi
1. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
2. The work was partially founded by the National Centre for Research and Development (NCBiR)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5047b78f-9f99-4ea1-afb1-9fc255af335d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.