PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Effect of Natural Aging and Fatigue Crack Propagation Rate on Welded and Non-Welded Aluminum Alloy (AA2219-T87)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aluminum alloys are widely used for fabrication of aircraft, civil structures, and space vehicles. Fatigue life consideration of a material is the most important design criteria in many such critical applications. In this research work, a widely used Aluminum alloy AA2219-T87 was TIG welded using AA2319 as a filler material. The effect of natural aging on Fatigue Crack Propagation Rate (FCPR) of welded and non-welded compact tension (CT) specimens (AA2219˗T87) is studied. The relationship between stress intensity factor (ΔK) and crack ratio (a/W) for different value of the crack length in base metal and the welded zone is presented. Paris curves for both welded and non-welded specimens and compared to study the effect of natural aging (NA) on FCGR and compared with non-aged specimens. The results obtained provide a base for the development of Structural Health Monitoring systems for the propagation of crack growth in such components.
Twórcy
autor
  • Department of Mechanical Engineering, International Islamic University, Islamabad, Pakistan
  • Institut für Metallformung, TU Bergakademie Freiberg, Bernhard-von-Cotta-Strasse 4, 09599 Freiberg (Sachsen), Germany
autor
  • Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome 00186, Italy
  • hassan.elahi@uniroma1.it
  • Department of Mechanical Engineering, University College of Engineering and Technology, Sargodha, Pakistan
autor
  • Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome 00186, Italy
  • Department of Mechanical Engineering, International Islamic University, Islamabad, Pakistan
  • Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome 00186, Italy
Bibliografia
  • 1. Owolabi, G.M., et al., Fatigue Responses of Three AA 2000 Series Aluminum Alloys. Journal of Materials Science and Chemical Engineering, 2019. 7: p. 32–48.
  • 2. Nijin, I., R.S. Kumar, and A. Banerjee, Role of stress-state on initiation and growth of a fatigue crack. International Journal of Fatigue, 2019. 118: p. 298–306.
  • 3. Ullah, M., et al., Numerical Simulation and Experimental Verification of CMOD in CT Specimens of TIG Welded AA2219-T87. Arabian Journal for Science and Engineering, 2015. 40(3): p. 935–944.
  • 4. Atta-ur-Rahman, R., et al., Demarcation of Fatigue Crack Cumulative Damage (Initiation+ stage I) of Aluminum Alloy under Combined Loading. Life Science Journal, 2013. 10(12s).
  • 5. Asghar, W., et al., Investigation of fatigue crack growth rate in CARALL, ARALL and GLARE. Fatigue & Fracture of Engineering Materials & Structures, 2017. 40(7): p. 1086–1100.
  • 6. Mukhtar, F., et al., Effect of chrome plating and varying hardness on the fretting fatigue life of AISI D2 components. Wear, 2019. 418–419: p. 215–225.
  • 7. Ullah, M., C.S. Wu, and F. Qayyum, Prediction of crack tip plasticity induced due to variation in solidification rate of weld pool and its effect on fatigue crack propagation rate (FCPR). Journal of Mechanical Science and Technology, 2018. 32(8): p. 3625–3635.
  • 8. Liu, L., D. Ren, and F. Liu, A review of dissimilar welding techniques for magnesium alloys to aluminum alloys. Materials, 2014. 7(5): p. 3735–3757.
  • 9. Malarvizhi, S. and V. Balasubramanian, Fatigue crack growth resistance of gas tungsten arc, electron beam and friction stir welded joints of AA2219 aluminium alloy. Materials & Design, 2011. 32(3): p. 1205–1214.
  • 10. Malarvizhi, S. and V. Balasubramanian, Effect of welding processes on AA2219 aluminium alloy joint properties. Transactions of Nonferrous Metals Society of China, 2011. 21(5): p. 962–973.
  • 11. Ullah, M., C.S. Wu, and M. Shah, In situ delta ferrite estimation and their effects on FCPR at different orientations of multipass shielded metal arc welded SS304L. Journal of Manufacturing Processes, 2016. 21: p. 107–123.
  • 12. Ericsson, M. and R. Sandström, Influence of welding speed on the fatigue of friction stir welds, and comparison with MIG and TIG. International Journal of Fatigue, 2003. 25(12): p. 1379–1387.
  • 13. Malarvizhi, S. and V. Balasubramanian, Effects of welding processes and post-weld aging treatment on fatigue behavior of AA2219 aluminium alloy joints. Journal of Materials Engineering and Performance, 2011. 20(3): p. 359–367.
  • 14. Zhu, Z., et al., Effect of post weld heat treatment on the microstructure and corrosion behavior of AA2219 aluminum alloy joints welded by variable polarity tungsten inert gas welding. Materials & Design (1980–2015), 2015. 65: p. 1075–1082.
  • 15. Peng, D., et al., Effects of aging treatment and heat input on the microstructures and mechanical properties of TIG-welded 6061-T6 alloy joints. International Journal of Minerals, Metallurgy, and Materials, 2013. 20(3): p. 259–265.
  • 16. Sharma, V.M.J., et al., Fatigue crack growth of AA2219 under different aging conditions. Materials Science and Engineering: A, 2011. 528(12): p. 4040–4049.
  • 17. Cao, L., P.A. Rometsch, and M.J. Couper, Clustering behaviour in an Al–Mg–Si–Cu alloy during natural aging and subsequent under-aging. Materials Science and Engineering: A, 2013. 559: p. 257–261.
  • 18. Takaki, Y., et al., Effects of Natural Aging on Bake Hardening Behavior of Al–Mg–Si Alloys with Multi-Step Aging Process. Materials Transactions, 2014. 55(8): p. 1257–1265.
  • 19. Elahi, H., et al. Stability of piezoelectric material for suspension applications. in 2017 Fifth International Conference on Aerospace Science & Engineering (ICASE). 2017. IEEE.
  • 20. Swati, R., et al., Experimental and numerical investigation of transversal damage in carbon fiber reinforced composites using X-FEM analysis. Journal of Mechanical Science and Technology, 2019. 33(1): p. 205–211.
  • 21. Memmolo, V., et al., Experimental and Numerical Investigation of PZT Response in Composite Structures with Variable Degradation Levels. Journal of Materials Engineering and Performance, 2019: p. 1–8.
  • 22. Khan, M.U., et al., Deflection of coupled elasticity– electrostatic bimorph PVDF material: theoretical, FEM and experimental verification. Microsystem Technologies, 2018: p. 1–8.
  • 23. Elahi, H., et al., Design and performance analysis of hybrid solar powered geyser in Islamabad, Pakistan. Therm Sci, 2018.
  • 24. Elahi, H., M. Eugeni, and P. Gaudenzi, Design and performance evaluation of a piezoelectric aeroelastic energy harvester based on the limit cycle oscillation phenomenon. Acta Astronautica, 2019. 157: p. 233–240.
  • 25. Elahi, H., M. Eugeni, and P. Gaudenzi, A review on mechanisms for piezoelectric-based energy harvesters. Energies, 2018. 11(7): p. 1850.
  • 26. Elahi, H., M. Eugeni, and P. Gaudenzi, Electromechanical degradation of piezoelectric patches, in Analysis and modelling of advanced structures and smart systems. 2018, Springer. p. 35–44.
  • 27. Swati, R., et al., Investigation of tensile and in-plane shear properties of carbon fiber reinforced composites with and without piezoelectric patches for micro-crack propagation using extended finite element method. Microsystem Technologies, 2019. 25(6): p. 2361–2370.
  • 28. Elahi, H., et al., Response of piezoelectric materials on thermomechanical shocking and electrical shocking for aerospace applications. Microsystem Technologies, 2018. 24(9): p. 3791–3798.
  • 29. Miller, K., The behaviour of short fatigue cracks and their initiation Part I–A review of two recent books. Fatigue & Fracture of Engineering Materials & Structures, 1987. 10(1): p. 75–91.
  • 30. Narayana, G.V., et al., Fracture behaviour of aluminium alloy 2219–T87 welded plates. Science and Technology of Welding & Joining, 2004. 9(2): p. 121–130.
  • 31. Qayyum, F., et al., Experimental Investigations and Multiscale Modeling to Study the Effect of Sulfur Content on Formability of 16MnCr5 Alloy Steel. steel research international, 2019. 90(6): p. 1800369.
  • 32. Newman Jr, J. and I. Raju, An empirical stress-intensity factor equation for the surface crack. Engineering Fracture Mechanics, 1981. 15(1): p. 185–192.
  • 33. Designation, A., E399–90. Standard test method for plane-strain fracture toughness of metallic materials. 1991 Annual Book of ASTM Standards, 1997. 3: p. 485–51.
  • 34. Sultan, A., et al., Numerical simulation and experimental verification of CMOD in SENT specimen: Application on FCGR of welded tool steel. Acta Metallurgica Sinica (English Letters), 2013. 26(1): p. 92–96.
  • 35. Hartman, J., R. Beil, and G. Hahn, Effect of copper rich regions on tensile properties of VPPA weldments of 2219-T87 aluminum. Welding Journal, 1987. 1: p. 73–83.
  • 36. Mondolfo, L.F., Aluminum alloys: structure and properties. Vol. 5. 1976: Butterworths London.
  • 37. Paglia, C. and R. Buchheit, Microstructure, microchemistry and environmental cracking susceptibility of friction stir welded 2219-T87. Materials Science and Engineering: A, 2006. 429(1): p. 107–114.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50472cfa-667f-4e6a-bdcb-0a8ed402efba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.