PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Novel accessibility metrics based on hierarchical decomposition of transport networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Scientific analysis of public transport systems at the urban, regional, and national levels is vital in this contemporary, highly connected world. Quantifying the accessibility of nodes (locations) in a transport network is considered a holistic measure of transportation and land use and an important research area. In recent years, complex networks have been employed for modeling and analyzing the topology of transport systems and services networks. However, the design of network hierarchy-based accessibility measures has not been fully explored in transport research. Thus, we propose a set of three novel accessibility metrics based on the k-core decomposition of the transport network. Core-based accessibility metrics leverage the network topology by eliciting the hierarchy while accommodating variations like travel cost, travel time, distance, and frequency of service as edge weights. The proposed metrics quantify the accessibility of nodes at different geographical scales, ranging from local to global. We use these metrics to compute the accessibility of geographical locations connected by air transport services in India. Finally, we show that the measures are responsive to changes in the topology of the transport network by analyzing the changes in accessibility for the domestic air services network for both pre-covid and post-covid times.
Rocznik
Tom
Strony
139--160
Opis fizyczny
Bibliogr. 44 poz.
Twórcy
autor
  • Department of Computer Science, Hansraj College, University of Delhi, Delhi, India
  • Department of Civil Engineering, and Transportation Research and Injury Prevention Centre (TRIPC), Indian Institute of Technology Delhi, New Delhi, India
  • Department of Computer Science, University of Delhi, Delhi, India
Bibliografia
  • 1. Wu H., D. Levinson. 2020. “Unifying access”. Transp. Res. Part D Transp. Environ. 83.
  • 2. Levinson D., H. Wu. 2020. “Towards a general theory of access.”. J. Transp. Land Use 13(1).
  • 3. Geurs K.T., B. van Wee. 2004. “Accessibility evaluation of land-use and transport strategies: Review and research directions”. J. Transp. Geogr. 12(2).
  • 4. Handy S. 2020. “Is accessibility an idea whose time has finally come?” Transp. Res. Part D Transp. Environ. 83.
  • 5. El-Geneidy A., D. Levinson. 2022. “Making accessibility work in practice”. Transport Reviews 42(2).
  • 6. Levine J. 2020. “A century of evolution of the accessibility concept”. Transp. Res. Part D Transp. Environ. 83.
  • 7. Hansen W.G. 1959. “How Accessibility Shapes Land Use”. J. Am. Plan. Assoc. 25(2).
  • 8. Koenig J.G. 1980. “Indicators of urban accessibility: Theory and application”. Transportation (Amst). 9(2).
  • 9. Ingram D.R. 1971. “The Concept of Accessibility: A Search for an Operational Form”. Reg. Stud. 5(2).
  • 10. Morris J.M., P.L. Dumble, M.R. Wigan. 1979. “Accessibility indicators for transport planning”. Transp. Res. Part A Gen. 13(2).
  • 11. Handy S. 1993. Regional Versus Local Accessibility : Implications for Nonwork Travel. Univ. Calif. Transprtation Cent.
  • 12. Cui M., D. Levinson. 2020. “Primal and Dual Access”. Geogr. Anal. 52(3).
  • 13. Lee J., H.J. Miller. 2020. “Robust accessibility: Measuring accessibility based on travelers’ heterogeneous strategies for managing travel time uncertainty”. J. Transp. Geogr. 86.
  • 14. Hellervik A., L. Nilsson, C. Andersson. 2019. “Preferential centrality – A new measure unifying urban activity, attraction and accessibility”. Environ. Plan. B Urban Anal. City Sci. 46(7).
  • 15. Neutens T., M. Versichele, T. Schwanen. 2010. “Arranging place and time: A GIS toolkit to assess person-based accessibility of urban opportunities”. Appl. Geogr. 30(4).
  • 16. Manaugh K., A. El-Geneidy. 2012. “Who Benefits from New Transportation Infrastructure? Using Accessibility Measures to Evaluate Social Equity in Transit Provision”. Chapter 12. In: Accessibility Analysis and Transport Planning. Edited by Karst T. Geurs, Kevin J. Krizek, Aura Reggiani. ISBN: 9781781000106.
  • 17. Handy S. 2005. “Planning for Accessibility: In: Access to Destinations. Edited by Levinson D.M., Krizek K.J. Emerald Group Publishing Limited, Bingley. ISBN: 9780080446783.
  • 18. Garrison W., D. Marble. 1962. “The Structure of Transportation Networks”. U.S. Army Transp. Command. Tech. Rep. 62-II: 100.
  • 19. Cats O. 2017. “Topological evolution of a metropolitan rail transport network: The case of Stockholm”. J. Transp. Geogr. 62.
  • 20. Hong J., R. Tamakloe, S. Lee, D. Park. 2019. “Exploring the topological characteristics of complex public transportation networks: Focus on variations in both single and integrated systems in the Seoul Metropolitan Area”. Sustain. 11(19).
  • 21. Matisziw T.C., T.H. Grubesic. 2010. “Evaluating locational accessibility to the US air transportation system”. Transp. Res. Part A Policy Pract. 44(9).
  • 22. Du W.B., X.L. Zhou, O. Lordan, Z. Wang, C. Zhao, Y.B. Zhu. 2016. “Analysis of the Chinese Airline Network as multi-layer networks”. Transp. Res. Part E Logist. Transp. Rev. 89.
  • 23. Dai L., B. Derudder, X. Liu. 2018. “The evolving structure of the Southeast Asian air transport network through the lens of complex networks, 1979–2012”. J. Transp. Geogr. 68.
  • 24. Wang Z., D. Luo, O. Cats, T. Verma. 2020. “Unraveling the Hierarchy of Public Transport Networks”. In: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020.
  • 25. Wang J., H. Mo, F. Wang, F. Jin. 2011. “Exploring the network structure and nodal centrality of China’s air transport network: A complex network approach”. J. Transp. Geogr. 19(4).
  • 26. Wang K., X. Fu. 2017. “Research on centrality of urban transport network nodes”. In: AIP Conference Proceedings 1839.
  • 27. Sarlas G., A. Páez, K.W. Axhausen. 2020. “Betweenness-accessibility: Estimating impacts of accessibility on networks”. J. Transp. Geogr. 84.
  • 28. Ravasz E., A.L. Barabási. 2003. “Hierarchical organization in complex networks”. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 67(2).
  • 29. Valverde S., R. V Solé. 2007. “Self-organization versus hierarchy in open-source social networks”. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 76(4).
  • 30. Lu C., J.X. Yu, R.H. Li, H. Wei. 2016. “Exploring hierarchies in online social networks”. IEEE Trans. Knowl. Data Eng. 28(8).
  • 31. Gülsoy G., N. Bandhyopadhyay, T. Kahveci. 2012. “HIDEN: Hierarchical decomposition of regulatory networks”. BMC Bioinformatics 13(1).
  • 32. Mengistu H., J. Huizinga, J.B. Mouret, J. Clune. “The Evolutionary Origins of Hierarchy”. PLoS Comput. Biol. 12(6).
  • 33. Weiss B.A., M. Sharp, A. Klinger. 2018. “Developing a hierarchical decomposition methodology to increase manufacturing process and equipment health awareness”. J. Manuf. Syst. 48.
  • 34. Raimbault J. 2020. “Hierarchy and co-evolution processes in urban systems.” 2020.
  • 35. Azimi-Tafreshi N., J. Gómez-Gardeñes, S.N. Dorogovtsev. 2014. “K-core percolation on multiplex networks”. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 90(3).
  • 36. Seidman S.B. 1983. “Network structure and minimum degree”. Soc. Networks 5(3): 269-287.
  • 37. Bickle A. 2010. The k-cores of a graph. Western Michigan University.
  • 38. Batagelj V., M. Zaversnik. 2003. “An O(m) Algorithm for Cores Decomposition of Networks”.
  • 39. Yerra B.M., D.M. Levinson. 2005. “The emergence of hierarchy in transportation networks”. Ann. Reg. Sci. 39(3).
  • 40. Bogũá M., D. Krioukov, K.C. Claffy. 2009. “Navigability of complex networks”. Nat. Phys. 5(1).
  • 41. Wuellner D.R., S. Roy, R.M. D’Souza. 2010. “Resilience and rewiring of the passenger airline networks in the United States”. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 82(5).
  • 42. Bonacich P. 1972. “Factoring and weighting approaches to status scores and clique identification”. J. Math. Sociol. 2(1).
  • 43. Bae J., S. Kim. 2014. “Identifying and ranking influential spreaders in complex networks by neighborhood coreness”. Phys. A Stat. Mech. its Appl. 395.
  • 44. Mohammed J. Zaki, Wagner Meira Jr. 2014. Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge University Press.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-504717ed-65e1-4165-8efc-9e4e6cb4b90e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.