PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dark current behaviour of type-II superlattice longwave infrared photodetectors under proton irradiation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Quantum Structure Infrared Photodetectors - QSIP : International Conference 2020/2022 (11 ; 2022 ; Kraków, Poland)
Języki publikacji
EN
Abstrakty
PL
In this work, the authors investigated the influence of proton-irradiation on the dark current of XBp longwave infrared InAs/GaSb type-II superlattice barrier detectors, showing a cutoff wavelength from 11 μm to 13 μm at 80 K. The proton irradiations were performed with 63 MeV protons and fluences up to 8∙10¹¹ H+/cm² on a type-II superlattice detector kept at cryogenic (100 K) or room temperature (300 K). The irradiation temperature of the detector is a key parameter influencing the effects of proton irradiation. The dark current density increases due to displacement damage dose effects and this increase is more important when the detector is proton-irradiated at room temperature rather than at cryogenic temperature.
Twórcy
  • University of Montpellier, 163 Auguste Broussonnet St., 34090 Montpellier, France
  • University of Montpellier, 163 Auguste Broussonnet St., 34090 Montpellier, France
  • University of Montpellier, 163 Auguste Broussonnet St., 34090 Montpellier, France
autor
  • University of Montpellier, 163 Auguste Broussonnet St., 34090 Montpellier, France
  • CNES, 18 Edouard Belin Ave., 31400 Toulouse, France
  • Airbus Defense & Space, 31 des Cosmonautes St., 31400 Toulouse, France
  • University of Montpellier, 163 Auguste Broussonnet St., 34090 Montpellier, France
Bibliografia
  • [1] Minoglou, K. et al. Infrared image sensor developments supported by the European Space Agency. Infrared Phys. Technol. 96, 351-360 (2019). https://doi.org/10.1016/j.infrared.2018.12.010
  • [2] Rogalski, A., Martyniuk, P. and Kopytko, M. InAs/GaSb type-II superlattice infrared detectors: Future prospect. Appl. Phys. Rev. 4, 031304 (2017). https://doi.org/10.1063/1.4999077
  • [3] Razeghi, M. et al. Antimonide-based type II superlattices: a superior candidate for the third generation of infrared imaging systems. J. Electron. Mater. 43, 2802-2807 (2014). https://doi.org/10.1007/s11664-014-3080-y
  • [4] Arounassalame, V. et al. Robust evaluation of long term stability of an InAs/GaSb type II superlattice midwave infrared focal plane array. IEEE Trans. Instrum. Meas. 70, 1-8 (2021). https://doi.org/10.1109/TIM.2020.3024406
  • [5] Donetsky, D., Belenky, G., Svensson, S. & Suchalkin, S. Minority carrier lifetime in T2SL InAs-GaSb strained layer superlattice and bulk HgCdTe materials. Appl. Phys. Lett. 97, 052108 (2010). https://doi.org/10.1063/1.3476352
  • [6] Maimon, S. & Wicks, G. W. nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl. Phys. Lett. 89, 151109 (2006). https://doi.org/10.1063/1.2360235
  • [7] Klipstein, P. C. XBn barrier photodetectors for high sensitivity and high operating temperature infrared sensors. Proc. SPIE 6940, 69402U (2008). https://doi.org/10.1117/12.778848
  • [8] Klipstein, P. C. XBnn and XBpp infrared detectors. J. Cryst. Growth 425, 351-356 (2015). https://doi.org/10.1016/j.jcrysgro.2015.02.075
  • [9] Delmas, M., Rossignol, R., Rodriguez, J.-B. & Christol, P. Design of InAs/ GaSb superlattice infrared barrier detectors. Superlattices Microstruct. 104, 402–414 (2017). https://doi.org/10.1016/j.spmi.2017.03.001
  • [10] Logan, J. V., Short, M. P., Webster, P. T. & Morath, C. P. Orbital equivalence of terrestrial radiation tolerance experiments. IEEE Trans. Nucl. Sci. 67, 2382-2391 (2020). https://doi.org/10.1109/TNS.2020.3027243
  • [11] Logan, J. V. et al. Understanding the fundamental driver of semiconductor radiation tolerance with experiment and theory. Phys. Rev. Mater. 6, 084601 (2022). https://doi.org/10.1103/PhysRevMaterials.6.084601
  • [12] W. de Boer, J. et al. Radiation hardness of diamond and silicon sensors compared. Phys. Stat. Sol. A 204, 3004-3010 (2007). https://doi.org/10.1002/pssa.200776327
  • [13] Jenkins, G. D., Morath, C. P. & Cowan, V. M. Empirical study of the disparity in radiation tolerance of the minority-carrier lifetime between II-VI and III-V MWIR detector technologies for space applications. J. Electron. Mater. 46, 5405-5410 (2017). https://doi.org/10.1007/s11664-017-5628-0
  • [14] Morath, C. P., Garduno, E. A, Jenkins, G. D. Steenbergen, E. A. & Cowan, V. M. Effects of 63 MeV proton-irradiation on the dark-current in III-V-based, unipolar barrier infrared detectors. Infrared Phys. Technol. 97, 448-455 (2019). https://doi.org/10.1016/j.infrared.2018.12.033
  • [15] Jackson, E. M. et al. Radiation damage in type ii superlattice infrared detectors. J. Electron. Mater. 39, 852-856 (2010). https://doi.org/10.1007/s11664-010-1227-z
  • [16] Cowan, V. M. et al. Radiation tolerance characterization of dual band InAs/GaSb type-II strain-layer superlattice pBp detectors using 63 MeV protons. Appl. Phys. Lett. 101, 251108 (2012). https://doi.org/10.1063/1.4772543
  • [17] Soibel, A. et al. Proton radiation effect on performance of InAs/GaSb complementary barrier infrared detector. Appl. Phys. Lett. 107, 261102 (2015). https://doi.org/10.1063/1.4938756
  • [18] Morath, C. P., Garduno, E. A., Cowan, V. M. & Jenkins, G. D. More accurate quantum efficiency damage factor for proton-irradiated, III-V-based unipolar barrier infrared detectors. IEEE Trans. Nucl. Sci. 64, 74-80 (2017). https://doi.org/10.1109/TNS.2016.2634500
  • [19] Hubbs, J. E. Proton radiation experimental results on a III-V nBn mid-wavelength infrared focal plane array. Proc. SPIE 9933, 993307 (2016). https://doi.org/10.1117/12.2240199
  • [20] Soibel, A. et al. Radiation tolerance studies of long wavelength infrared InAs/GaSb detectors. Proc. SPIE, 9755, 975511 (2016). https://doi.org/10.1117/12.2209187
  • [21] Höglund, L. et al. Influence of proton radiation on the minority carrier lifetime in midwave infrared InAs/InAsSb superlattices. Appl. Phys. Lett. 108, 263504 (2016). https://doi.org/10.1063/1.4954901
  • [22] Höglund, L. et al. Influence of shallow versus deep etching on dark current and quantum efficiency in InAs/GaSb superlattice photodetectors and focal plane arrays for long wavelength infrared detection. Infrared Phys. Technol. 95, 158-163 (2018). https://doi.org/10.1016/j.infrared.2018.10.036
  • [23] Alchaar, R., Rodriguez, J.-B., Höglund, L., Naureen, S. & Christol, P. Characterization of an InAs/GaSb type-II superlattice barrier photodetector operating in the LWIR domain. AIP Adv. 9, 055012 (2019). https://doi.org/10.1063/1.5094703
  • [24] Morath, C. P., Cowan, V. M., Treider, L. A., Jenkins, G. D. & Hubbs, J. E. Proton irradiation effects on the performance of III-V-based unipolar barrier infrared detectors. IEEE Trans. Nucl. Sci. 62, 512-519 (2015). https://doi.org/10.1109/TNS.2015.2392695
  • [25] Morath, C. P., Steenbergen, E. H., Jenkins, G. D., Hubbs, J. E. &. Maestas, D. Irradiation effects on the performance of III-V-based nBn infrared detectors. J. Radiation Effects 38, 161-170 (2020). https://apps.dtic.mil/sti/pdfs/AD1093146.pdf
  • [26] Steenbergen, E. H. et al. A recent review of mid-wavelength infrared type-II superlattices: carrier localization, device performance, and radiation tolerance. Proc. SPIE 10111, 1011104 (2017). https://doi.org/10.1117/12.2266040
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50429a82-6363-412d-8dd5-e3aa1af9d090
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.