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Abstract: In the paper we investigate the existence of graphs isomorphism and the search
for invariants of connected graphs. A new graph invariant is formulated. It can be used to
detect isomorphism of connected graphs. The vector space of all simple cycles of the graph
and their edge-disjoint unions (cycle space) and the vector space of all cutting sets of the
graph and their edge-disjoint unions (cut space) are constructed in the article for finding a
new graph invariant. The authors investigate the method of constructing these vector spaces:
cycle space and cut space. A new estimate of the dimensions of these vector spaces of the
graph is given. The obtained invariant is demonstrated on a concrete example. A counterex-
ample is constructed to confirm the fact that the proposed invariant can be used as a necessary
but not sufficient condition for graphs isomorphism. A heuristic algorithm is proposed for
constructing a one-to-one correspondence between sets of vertices of isomorphic graphs.
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1. Introduction

Isomorphism of graphs is the equivalence relation on the set of all graphs of the same
order. Detection of graphs isomorphism is required in various fields of theoretical
and applied knowledge [5]. A number of scientific studies of recent decades [1–4]
are devoted to the problem of identifying isomorphic graphs as a class of equivalent
objects, but the question still remains unresolved.

Currently, methods for detecting isomorphism for some types of graphs are
known [6, 7]. For almost every particular algorithmic problem of detecting isomor-
phism of a special kind graphs, it was possible either to construct a polynomial algo-
rithm or to prove its belonging to the class of NP-complete problems [5]. However,
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detecting isomorphism of arbitrary graphs is a more complex task, which is still not
finally resolved. One approach to identifying isomorphism of arbitrary graphs is the
application of invariants.

In isomorphic graphs, by definition, all characteristics and properties are the
same. A characteristic of a graph is called an invariant if it does not change with
an isomorphic transformation of the graph. In many papers, an invariant is called
complete if its coincidence for different graphs guarantees the existence of their iso-
morphism. You can require that the invariant does not change when you renumber the
vertices of the graph. However, the latter requirement, in our opinion, is not essential,
since it does not correspond to the notion of automorphism of the graph. Note that
the graph automorphism is a special case of graphs isomorphism in a broad sense. On
the other hand, one of the forms of graph representation is adjacency matrix, which
allows to describe fully a given graph in a compact numerical form and depends on
the numbering of vertices in it. It is obvious that the complete invariant of the graph
remains unchanged under any numbering of the vertices and edges of the graph.

The main easily computable graph invariants are: the number of vertices and
edges of the graph, the vector of local degrees of vertices, the number of connected
components. Also, the number of vertices of the largest complete subgraph (density),
the largest number of pairwise non-adjacent vertices of the graph (non-density), the
chromatic number and the chromatic index of the graph, the Hadwigers number and
others were used as invariants by a number of authors [8]. All the characteristics listed
here are calculated from the original graph, but their values do not allow to restore
the graph structure. Therefore, the requirement of equality of these characteristics
is a necessary condition for graphs isomorphism, since counterexamples are known.
That is, in the case of identical invariants, graphs may not be isomorphic [11]. For
some classes of graphs, only a collection of several numerical characteristics helps
to identify isomorphism. There are also a number of papers devoted to the detection
of graph isomorphism using eigenvalues and the vectors of the adjacency matrix, the
graph spectrum [11].

In the problem of detecting isomorphism, we have two main subtasks. First, the
problem of identifying the isomorphism of two graphs without specifying the most
bijective mapping between the sets of their vertices. Secondly, establishing a one-to-
one correspondence between the sets of vertices of graphs that preserve the adjacency
of the corresponding vertices and all other characteristic properties, i.e. construction
of a map that is an automorphism on the set of vertices of the graph.

When detecting graphs isomorphism, the most important thing is to search for
criteria. As noted above, the equality of known invariants gives only the necessary
signs of isomorphism. The only currently known sufficient condition for graphs iso-
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morphism is the equality of adjacency matrices converted to the same type by permu-
tations of rows and corresponding columns. This transformation in the general case,
as we know, requires of order n! of steps’.

We note that to establish a bijective map, the Lux approach [9] is considered
to be the most promising, which reduces the number of permutations using block
structures. Based on this approach, Leslie Babay proposes a heuristic method for
constructing graphs isomorphism [10].

Thus, the search for a sufficient condition for graphs isomorphism, which can
be computed in polynomial time or at least almost polynomial, is relevant. Similarly,
with respect to establishing a bijective map of vertex sets of isomorphic graphs. In this
article new necessary condition for detection of graphs isomorphism are constructed.

2. Preliminary information

We present the necessary definitions and properties.
Definition. An abstract graph (graph) G = (V,E) is a pair, which consist of ver-

tices set V = {v} and edges set E = {e = (u,v)|u,v ∈ V}. The graph G has an order
n if |V |= n.

A pair of vertices can be connected by two or more edges, such edges are called
multiples. An edge can begin and end at the same vertex, that is, e = (v,v)∈ E. In this
case, the edge is called a loop. A graph is called simple if it does not contain multiple
edges and loops.

Definition. Graphs G1 =(V1,E1) and G2 =(V2,E2) are called isomorphic if there
is a one-to-one correspondence h : V1 → V2, preserving the adjacency of the corre-
sponding vertices:

e1 = (u,v) ∈ E1⇔ e2 = (h(u),h(v)) ∈ E2.

Isomorphic graphs are naturally identified. And they can be represented in the
same way. If the graphs G and H are isomorphic, then write G∼= H (so H ∼= G).

An isomorphic map of a graph onto itself is called an automorphism.
Definition. Let f be a function that associates with each graph G an element f (G)

from some set of M. The function f is called an invariant if its values on isomorphic
graphs coincide:

G∼= H⇒ f (G) = f (H)

for any graphs G and H.
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The invariant f is called complete if, for any graphs G and H the equality of
f (G) = f (H) implies an isomorphism of graphs G and H.

As "conditional" full invariants, many authors consider the adjacency, incidence
and Kirchhoffs matrices [12], since after transformation to the same form, they al-
low us to construct the required one-to-one correspondence between sets of graph
vertices. The following theorem is known.

Theorem 1 [13]. Graphs are isomorphic if and only if their adjacency matrices
(incidents, Kirchhoff) are permutationally similar, that is, they can be obtained one
from the other by permutations of the rows and the corresponding columns.

Moreover, a uniform computational algorithm has not yet been formulated for
an arbitrary graph without enumerating the elements of the set of vertices that has
complexity of order less than n!.

For the considered vectors and matrices, addition and multiplication operations
act in the Galois field GF(2) modulo 2, unless otherwise specified.

The route in the graph G = (V,E) is the finite sequence of its edges of the form
(v0,v1), (v1,v2),. . . , (vk−1,vk). The number of edges in the route (with repetitions) is
called the length of the route.

At the same time we have:
1) if v0 = vk, then the route is called closed, otherwise open;
2) if all edges of the route are different, then the route is called a chain and is

denoted by [v0;vk], if all vertices are different — a simple chain;
3) a closed chain (vk = v0) is called a cycle, a closed simple chain is a simple

cycle.
The graph G′ = (V ′,E ′) is called the subgraph of the graph G = (V,E), if V ′ ⊆V

and E ′ ⊆ E. If V ′ =V , then the graph G′ is called the spanning subgraph of the graph
G.

The spanning tree of the graph G= (V,E), |V |= n, is called a spanning subgraph
without cycles.

The proof of Theorem 2.2 [12] implies that if a graph is connected, then it has
at least one spanning tree. The converse is also true (Theorem 2.3, [12]).

Vertices u and v are called reachable if there is a route from u to v. A graph in
which any two vertices are reachable is called connected. Any vertex v is connected
with itself by a trivial route.

A connected subgraph G1 of a graph G is called a connected component of a
graph G if G1 is maximal in the sense that no other connected subgraph G2 of the
graph G contains the subgraph G1. The number of connected components of a graph
is denoted by k(G). For a connected graph, we have k(G) = 1.
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The cutting set or cutset S of a connected graph G is the minimal set of edges
whose removal makes the graph G disconnected.

Let G be a connected graph and V = {V1,V2} be a partition of the set of its
vertices: V = V1 ∪V2 and V1 ∩V2 = /0. The set of edges of the graph G, one end of
which belongs to V1, and the other to V2, is called a cut. The operation to delete
the edges of the cut divides the graph into two connected components and makes it
disconnected.

Definition[12]. Let T be an arbitrary spanning tree, T ∗ = G \ T be the corre-
sponding counting spanning tree of the graph G = (V,E), |V | = n, |E| = m. And let
e∗i be the chord (edge) of counting spanning tree T ∗. Since T is an acyclic graph, the
graph T ∪ e∗i contains exactly one cycle Ci. The cycle Ci consists of the chord e∗i and
those edges of the spanning tree T , which form a single simple chain between the
terminal vertices of the chord e∗i . The cycle Ci is called a basic cycle with respect to
the chord e∗i and the spanning tree T . The number of all basic cycles in an arbitrary
graph is equal to the cyclomatic number of the graph ν(G) = m− n+ k, where k is
the number of connected components.

The set of all basic cycles is called the fundamental system of cycles or cycle
basis relative to the fixed spanning tree of T . The fundamental system of cycles is
associated with a specific spanning tree. The number of spanning trees is equal to the
algebraic complement of any element of the Kirchhoff’s matrix. If we take another
spanning tree, then it will correspond to a different set of cycles that form the cycle
basis.

Removing the edge e j from the spanning tree T breaks it into 2 components
of connectivity T1 and T2. Let V1 and V2 be the sets of vertices of the components
T1 and T2, respectively. And G1 and G2 be the subgraphs of the graph G, which are
generated by the sets of the vertices V1 and V2. Obviously, T1 is the spanning tree of
the subgraph G1, and T2 is the spanning tree of the subgraph G2. Consequently, the
subgraphs G1 and G2 are connected. The separating cut V1 and V2 is the cutting set
of the graph G. The cutting set S j made up of edges connecting the vertices of the
components T1 and T2 of the spanning tree is called the base cut of G.

The set of all basic cuts is called the fundamental system of cuts or the funda-
mental cutsets of the graph G with respect to the spanning tree T . The number of the
basic cuts in an arbitrary graph is equal to the rank of the graph ν∗(G) = n− k.

Properties of basic cycles and basic cuts:
1. The base cycle Ci with respect to the chord e∗i of the T ∗ of the connected graph

G includes exactly those edges of the spanning tree T , which correspond to the basic
cuts which include this chord.
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2. The base cut S j with respect to the edge e j of the spanning tree T of the
connected graph G includes exactly those chords of the counting spanning trees T ∗,
which correspond to the basic cycles which are including this edge.

Let (e1,e2, . . . ,em) be a sequence of all edges of the graph G = (V,E), |V | = n,
|E|= m.

The base cycle Ci, i = 1, . . . ,ν, determines the vector (ci1,ci2, . . . ,cim), where
ci j = 1, if e j ∈ Ci, and ci j = 0, if e j /∈ Ci. The fundamental system of cycles corre-
sponds to the matrix of cycles C(G) = [ci j], i = 1, . . . ,ν, j = 1, . . . ,m. Since each
basic cycle Ci contains exactly one chord, the matrix C(G) can be transformed to
canonical form by rearranging the columns

Ĉ(G)ν×m ∼


1 0 ... 0 a1ν+1 ... a1m−ν

0 1 ... 0 a2ν+1 ... a2m−ν

... ... ... ... ... ... ...
0 0 ... 1 aνν+1 ... am−ν

= [Eν | C∗ ], (1)

where C∗=


a1ν+1 ... a1m−ν

a2ν+1 ... a2m−ν

... ... ...
aνν+1 ... aν m−ν

, ai j ∈ {0,1}, for i= 1, . . . ,ν, j = 1, . . . ,m−ν.

In contrast to [12], here we construct the cycle matrix for the graph, and not for
the digraph.

In the matrix C(G)ν×m, the columns of the unit submatrix Eν correspond to the
edges of the counting spanning tree T ∗, followed by the columns corresponding to
the edges of the spanning tree T . Here we note that the cycle matrix does not define
the entire graph up to isomorphism. For example, vertices of a graph of degree 1 will
not be present in it.

Similarly to the basic cut Si, for i = 1, . . . ,v∗, there is a vector (si1,si2, . . . ,sim),
where si j = 1, if the edge is e j ∈ Si, and si j = 0, if e j /∈ Si. For the fundamental system
of cuts, we can write the matrix of cuts S(G) = [si j], where i= 1, . . . ,ν∗, j = 1, . . . ,m,
which, by rearranging the columns, also converts to canonical form

Ŝ(G)ν∗ ∼


b11 ... b1ν 1 0 ... 0
b21 ... b2ν 0 1 ... 0
... ... ... ... ... ... ...

bν∗1 ... bν∗ν 0 0 ... 1

= [S∗|Ev∗ ], (2)
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where S∗ =


b11 ... b1ν

b21 ... b2ν

... ... ...
bν∗1 ... bν∗ ν

, bi j ∈ {0,1}, for i = 1, . . . ,v∗, j = 1, . . . ,ν.

Similarly, here we build a matrix of cuts for a graph, and not for a digraph. Note
that the matrix of cuts is also not a unique representation of the graph.

The rows of the matrix of cycles are called the cycle vectors of the graph G, the
rows of the matrix of cuts are called the vectors of the cuts.

In [16] algorithms of construction of basic cycles of minimum length are given.

3. Main part

We will consider abstract connected graphs with number of vertices n≥ 3.
For the graph G = (V,E), the Boolean (the set of all subsets) of the set E, in-

cluding the empty set /0, is denoted by WG. The set WG forms an Abelian group with
operation of addition modulo 2, provided that all elements are represented as rows of
0 and 1 length |E|= m by the following rule. If the edge ei belongs to a subset, then
the i-th coordinate is 1, if it does not belong to — 0. Addition is performed by coor-
dinate. Multiplying by 0 gives the zero line corresponding to the empty set. If we add
the operation of multiplying rows by elements of the Galois field GF(2) = {0,1},
then all the axioms of the linear space for the set WG will be fulfilled. In this case, the
dimension of this space is equal to |E| = m, and as one of the bases we can take the
rows corresponding to the edges of the graph (Theorem 4.2, [12]).

The set of all simple cycles, including the null-graph and the union of edge-
disjoint simple cycles of the graph over the field GF(2), forms a linear subspace WC

of dimension ν = m−n+ k of the space WG (Theorem 4.3, [12]). We will call it the
cycle space. Similarly, the set of all cuts corresponding to the selected spanning tree
of the graph and their edge-disjoint unions of cuts over the field GF(2) is a linear
subspace WS of dimension ν∗ = n− k of the space WG (Theorems 4.4, 4.5, [12]). We
will call it the cut space. Moreover, the set of basic cycles and the set of basic cuts
with respect to some spanning tree of a connected graph are bases, respectively, of
the space of all simple cycles of the graph and their edge-disjoint unions, as well as
the space of all cuts and their edge-disjoint unions, respectively. They are called cycle
basis and fundamental cutsets accordingly (or cut basis).

Linear subspaces of graph: the cycle space WC and the cut space WS are orthog-
onal, moreover, they are orthogonal complements of each other (theorems 4.9 and
4.10, [12]). And any graph can be represented as a direct sum of the cycle space and
the cut space (theorem 4.11, [12]).
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According to the process of construction of basic cycles, it can be seen that
only simple cycles can be basic. Since each of them will contain only one chord
(theorem 2.10, [12]) and edges of the graph spanning tree. Moreover, each chord will
be included only in one basic cycle. Therefore, the fundamental system of cycles
(cycle basis) is a linearly independent system of vectors. Similarly, each cut from the
fundamental cutsets of graph contains only one edge of the spanning tree (theorem
2.9, [12]). The specified edge belongs to a single cut from the fundamental cutset of
graph, which ensures their linear independence.

The elements of the linear subspaces WC and WS are found as linear combina-
tions of the vectors of these linearly independent systems of vectors, therefore the
cycle basis and the fundamental cutsets form the bases of the corresponding vector
subspaces (Theorem 4.6, [12]).

Theorem 2 [14]. For a simple graph G, any row of the matrix C = C(G)ν×m is
orthogonal to any row of the matrix S = S(G)ν∗×m

C ·ST = S ·CT = 0,

where CT ,ST are transposed matrices, 0 is the zero matrix of the corresponding
dimension.

A similar theorem for a digraph was proved in [12] by Theorem 6.6.
Theorem 3 [14]. Let for some spanning tree T of a connected graph G = (V,E),

|V | = n, |E| = m, k = 1, n ≥ 3, the matrix of cycles C(G) is constructed and trans-
formed to the form C(G) = [Em−n+k | C∗ ]. Then the canonical form of the matrix of
cuts can be defined as S(G) = [S∗|En−k], where S∗ = (C∗)T .

Theorem 4 [15]. 1. The order of the linear subspace WC of all simple cycles of
the graph, including the null-graph, and their edge-disjoint unions (cycle space), is
2m − n + k.

2. The order of the linear subspace WS (cut space) of all cutsets of the graph and
their edge-disjoint unions (cut space) is 2n−k.

Corollary 1. The number of all non-zero simple cycles and their edge-disjoint
graph associations is 2m−n+k−1. The number of all non-zero cutsets of a graph and
their edge-non-intersection associations is 2n−k−1.

Thus, using the matrix of cycles C(G), we construct the matrix of fundamental
cutsets of the graph S(G). Using the matrices C(G) and S(G), we can construct the
cycle space WC of all simple cycles and their edge-disjoint unions and the cut space
WS of all cuts and their edge-disjoint unions of the graph G as the set of all possible
linear combinations of rows of matrices by adding them modulo 2 over the Galois
field GF(2).
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Theorem 5. The isomorphic graphs are the same:
1) ordered numerical sequences of lengths of all simple cycles and their edge-

disjoint unions,
2) ordered numerical sequences of lengths of all cutsets and their edge-disjoint

unions.
The proposed numerical sequences can be used as two invariants upon detection

of graphs isomorphism. Using only the sequence of lengths of all simple cycles and
their edge-disjoint unions does not work on graphs with vertices of degree 1.

Example 1. We consider the use of the proposed invariants on a known pair of
non-isomorphic graphs G1 = (V1,E1) and G2 = (V2,E2) (figure 1).

a) G1 b) G2

Fig. 1. Non-isomorphic graphs G1 and G2

For graphs G1 = (V1,E1) and G2 = (V2,E2) we have |V1| = |V2| = 6, |E1| =
|E2|= 9, k1 = k2 = 1. Note that the graphs G1 and G2 are regular of degree 3, that is,
the vectors of the vertices powers of the graphs are (3;3;3;3;3;3). These invariants
do not give an answer to the question about the isomorphism of these graphs.

a) T1 b) T2

Fig. 2. The spanning tree T1 and the spanning co-tree T ∗1 for the graph G1
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We construct the cycle space WC(G1) for the graph G1. The cyclomatic rank
of the graph G1 is ν(G1) = 9− 6 + 1 = 4. Consequently, any spanning tree of a
graph contains 5 edges, and spanning co-tree — 4 chords (edges). Take an arbitrary
spanning tree of the graph T1 (figure 2, a) and appropriate spanning co-tree T ∗1 (figure
2, b). Note that the spanning tree T1 is presented in the form of a connected tree, and
the spanning co-tree of T ∗1 is forest.

Attaching the chord (edge) e3 of the spanning co-tree T ∗1 to the spanning tree
T1, we obtain the cycle C1 = {e1, e2, e3, e4} = (111100000), whose length is 4,
l(C1) = 4. Similarly for the chord e5 cycle is C2 = {e5, e4, e1,e8} = (100110010),
l(C2) = 4, for the chord e6 cycle is C3 = {e6, e1, e8, e9}= (100001011), l(C3) = 4,
for the chord e7 cycle is C4 = {e2, e7, e9, e8}= (010000111), l(C4) = 4.

The constructed basic cycles relative to the spanning tree T1 form a fundamental
system of cycles (cycle basis). Rewrite them in the form of vectors that form the rows
of the matrix of cycles:

C(G1)4×9 =


e1 e2 e3 e4 e5 e6 e7 e8 e9

1 1 1 1 0 0 0 0 0
1 0 0 1 1 0 0 1 1
1 0 0 0 0 1 0 1 1
0 1 0 0 0 0 1 1 1

.

Transform the matrix C(G1)4×9 to the canonical form, first writing down the
columns corresponding to the spanning co-tree chords T ∗1 :

Ĉ(G1)4×9 =


e3 e5 e6 e7 e1 e2 e4 e8 e9

1 0 0 0 1 1 1 0 0
0 1 0 0 1 0 1 1 0
0 0 1 0 1 0 0 1 1
0 0 0 1 0 1 0 1 1

= [E4|C∗].

According to Theorem 3, the matrix of basic cuts (fundamental cutsets) in the
canonical form is equal to

S(G1)5×9 =



e3 e5 e6 e7 e1 e2 e4 e8 e9

1 1 1 0 1 0 0 0 0
1 0 0 1 0 1 0 0 0
1 1 0 0 0 0 1 0 0
0 1 1 1 0 0 0 1 0
0 0 1 1 0 0 0 0 1

= [(C∗)T |E5].
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The dimension of the space WC(G1) of simple cycles and their edge-disjoint
unions for the G1 graph is 24, and the elements of the space are represented by vec-
tors obtained from the matrix C(G1)4×9 by modulo-2 addition of all possible combi-
nations of the matrix rows:

C5 = (011010010), C6 = (011101011), C7 = (101100111),
C8 = (000111001), C9 = (110110101), C10 = (110011100),
C11 = (111011001), C12 = (001010101), C13 = (010111110),
C14 = (001101100), C15 = (101011110).
In this case, we take into account the trivial zero cycle C16 = (000000000).
The ordered sequence of lengths of all constructed simple cycles and their edge

disjoint unions of the space WC(G1) has the form:

(0,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6).

Similarly, for the graph G2 the matrix of cycles C(G2) and the matrix of cuts
S(G2) in the canonical form are constructed on the spanning tree T2 and on the span-
ning co-tree T ∗2 (Figure 3):

Ĉ(G2) =


e3 e5 e6 e7 e1 e2 e4 e8 e9

1 0 0 0 1 1 1 0 0
0 1 0 0 1 0 1 1 0
0 0 1 0 1 0 0 1 0
0 0 0 1 0 1 0 1 1

,

Ŝ(G2) =



e3 e5 e6 e7 e1 e2 e4 e8 e9

1 1 1 0 1 0 0 0 0
1 0 0 1 0 1 0 0 0
1 1 0 0 0 0 1 0 0
0 1 1 1 0 0 0 1 0
0 0 0 1 0 0 0 0 1

.

The ordered sequence of lengths of all constructed simple cycles and their edge
disjoint unions of the cycle space WC(G2) has the form:

(0,3,3,4,4,4,4,5,5,5,5,6,6,6,6,6).

At this step, it can be noted that the ordered sequences of the lengths of all simple
cycles and their edge-disjoint unions of the cycle spaces WC(G1) and WC(G2) do not
coincide. Therefore, there is no need to find the space of all cuts of the graph. And on
the basis of the necessary condition (Theorem 5), these graphs are not isomorphic.

115



Larisa Marchenko, Viktoria Podgornaya

a) T2 b) T ∗2

Fig. 3. The spanning tree T2 and the spanning co-tree T ∗2 for the graph G2

Thus, to detect the isomorphism of graphs, one should construct a matrix of cy-
cles of the graph along one of the spanning trees of the graph. With its help, you can
get in the graph the whole set of simple cycles and their edge-disjoint unions. To do
this, you need to find all possible sums of rows of the graph matrix of cycles accord-
ing to the definition of the basis of the linear space of WC. Such nonzero sums will be
2ν−1, where ν = m−n+ k is the cyclomatic rank of the graph. Of course, the repre-
sentations of these cycles will depend on the numbering of the vertices of the graph
and the order in which they are considered. But we can first determine the lengths of
all simple cycles in a graph and their edge-disjoint unions. Of course, for isomorphic
graphs, ordered by non-decreasing sequences of the lengths of all simple cycles and
their edge-disjoint unions must coincide completely. The discrepancy allows you to
immediately answer the absence of isomorphism between the graphs.

Naturally, all vertices of degree 1 will not participate in the recording of cycles
of a graph, since the hanging vertices of a connected graph do not enter into one
cycle and will not be represented by units in the matrix of cycles. Therefore, it is also
advisable here to consider the matrix of basic cuts, since the hanging vertices will
necessarily fall into the set of all cutsets of the graph and their edge-disjoint unions.
Since all such cutsets and their unions form a linear space of WS, then using the matrix
of basic cuts in 2n−k−1 steps (summation modulo 2 of all possible variants of rows of
the matrix S), all cutsets of the graph and their edge-disjoint unions can be obtained.

Like the case with cycles, isomorphic graphs organized by non-decreasing se-
quences of all cutsets and their edge-disjoint unions must coincide completely. The
discrepancy allows you to immediately answer the absence of isomorphism between
the graphs.

Note that this invariant, like many well-known invariants, does not allow us to
establish the absence of isomorphism for the graphs G3 and G4 in Figure 4.
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a) G b) G4

Fig. 4. Non-isomorphic graphs G3 and G4

The graphs G3 and G4 have the same number of vertices, edges, connected com-
ponents, the same ordered power series of vertices, equal densities and non-densities,
chromatic numbers, Hadwigers numbers. Also, both graphs have a single simple cy-
cle of length 4 and 15 non-zero cutsets, the ordered sequences of lengths of which
coincide. This counterexample suggests that in case of coincidence of ordered se-
quences of lengths of vectors of spaces WC and WS, additional studies are required.
Therefore, the coincidence of these new invariants is also only a necessary condition
of graph isomorphism.

Thus, as invariants of a graph, it is recommended to consider the vector of de-
grees of the vertices of the graph, together with the ordered sequences of lengths of
simple cycles and cutsets of the graph. However, with the full coincidence of these
quantities, it is possible to make an assumption about the isomorphism of the graphs
under consideration, but additional research will be required.

It is possible for graphs to establish an isomorphism using the following heuristic
algorithm.

Let G and G∗ are isomorphic graphs with different numbering of the vertices.
It is necessary to construct vertex classification trees for establishing a one-to-one
correspondence between the vertex sets of graphs G and G∗. Construction of the
classification tree of the graph G = (V,E), V = {v1, v2, . . . , vn}, |V | = n, |E| = m,
k = 1, consists of the following steps.

(1) construction of spaces WC of simple cycles (and their edge-disjoint unions)
and WS of simple cuts (and their edge-disjoint unions) of graph G;

(2) establishing the incidence property of each vertex of the graph to some edges
forming cycle of the space WC or a cut of the space WS;

(3) construction of matrix X = [xi j] "vertex-property". The cycles and the cuts of
the spaces WC and WS respectively are considered as properties forming the rows of
the matrix. The element xi j of the matrix takes the value 1 if the vertex v j is incident
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to some edge of the cycle or cut located in the i-th row, and 0 otherwise, where
i = 1, . . . , p, j = 1, . . . ,n, p = 2m−n+k +2n−k−2;

(4) calculation of the sum of elements in each column of the matrix X : Q j =

∑
p
i=1 xi j, j = 1, . . . ,n;

(5) sorting the columns of the matrix X in non-decreasing order of vertex degrees
deg v j, j = 1, . . . ,n. Columns corresponding to vertices with equal degrees, it is also
desirable to sort in non-decreasing order of the sums of Q j. Let’s redefine the obtained
sequence of vertices as x1, x2, . . . ,xn;

(6) construction of the similarity matrix H = [h jk] of vertices x1, x2, . . . ,xn,
where the element h jk is the "distance" between vertices x j and xk, calculated by
the formula h jk = ∑

p
i=1 |xi j− xik| for j,k = 1, . . . ,n;

(7) dividing the set of vertices using the similarity matrix, assuming that initially
all vertices belong to the same class: K1 = {x1, x2, . . . ,xn}. To do this, two vertices xl
and xq are defined, the difference between them is the greatest, that is, h jk =max{hi j}.
The resulting vertices are considered to be the centers of two new classes Kl and
Kq. Other vertices are divided into these classes by the degree of proximity to their
centers. If the centers of the classes are the vertices xl and xq forming the classes
Kl and Kq respectively, then the vertex xr ∈ Kl if hrl < hrq, or xr ∈ Kq otherwise.
As a result, all vertices will be distributed between two classes Kl and Kq. Further
separation of vertices classes Kl and Kq takes place by a similar procedure. If at some
step it turned out that there are several vertices with equal distances to the centers
in the classes, then the degree of vertex deg x j and Q j should be taken into account
when dividing them.

The split process ends when there is only one vertex in each class.
This procedure allows us to construct a classification tree K∗, whose hanging

vertices correspond to the vertices x1, x2, . . . ,xn and, consequently, to the vertices
v1, v2, . . . , vn of the original graph G.

Similarly, we construct a classification tree K∗ of the graph G∗ = (U,E∗), U =
{u1, u2, . . . , un}, |U |= n, |E|= m, k = 1, whose hanging vertices are u1, u2, . . . , un.

With the help of known algorithms for establishing isomorphism of trees, a one-
to-one mapping between sets of graph vertices is constructed.

The work of the proposed algorithm is considered by an example.
Example 2. Establish a one-to-one correspondence between vertices of isomor-

phic graphs G5 = (V, E5) and G6 = (U, E6), |V | = |U | = 5, |E5| = |E6| = 6,
k(G5) = k(G6) = 1 (figure 5) using vector spaces of simple cycles (and their edge-
disjoint unions) and cuts (and their edge-disjoint unions) WC and WS.

Choosing the spanning trees T5 and T6 of graphs G5 and G6 (figure 5), we obtain
the following matrix of basis cycles
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G5 G6

T5 T6

Fig. 5. Isomorphic graphs G5 and G6 and their spanning trees T5 and T6

C(G5) =

(
1 1 1 0 1 0
1 1 0 1 0 0

)
,

C(G6) =

(
0 1 0 1 1 0
1 0 0 0 1 1

)
.

Next, we find the corresponding matrix of basic cuts

S(G5) =


1 1 1 0 0 0
1 1 0 1 0 0
1 0 0 0 1 0
0 0 0 0 0 1

 ,

S(G6) =


0 1 1 0 0 0
1 0 0 1 0 0
0 0 0 0 1 0
1 1 0 0 0 1

 .

Using matrices C(G5), S(G5) the corresponding spaces WC(G5) and WS(G5) are
constructed. Let’s form a matrix "vertex-property" X(G5) in accordance with point
(3) of the algorithm
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X(G5) v1 v2 v3 v4 v5

C1 1 1 1 1 0
C2 1 1 1 0 0
C3 1 0 1 1 0
S1 1 1 1 1 0
S2 1 1 1 1 0
S3 1 0 1 1 0
S4 0 0 0 1 1
S5 1 1 1 0 0
S6 1 1 1 1 0
S7 1 1 1 1 1
S8 1 1 1 1 0
S9 1 1 1 1 1
S10 1 0 1 1 1
S11 1 1 1 1 0
S12 1 1 1 1 1
S13 1 1 1 1 1
S14 1 1 1 1 1
S15 1 1 1 1 1
Q j 17 14 17 16 8

After ordering the vertices by non-decreasing degrees, we find the matrix of
similarity of the vertices of the graph G5

H(G5) = Ŝ(G2) =



x1 x2 x3 x4 x5

0 10 11 11 8
10 0 3 3 6
11 3 0 0 3
11 3 0 0 3
8 6 3 3 0

,

where x1→ v5, x2→ v2, x3→ v1, x4→ v3, x5→ x4.
Using the matrix H(G5), taking into account the values of Q j, we construct a

classification tree of vertices of the graph G5 (figure 6, a). Similarly, we obtain the
vertex classification tree of the graph G6 (figure 6, b).

Comparing the classification trees K(G5) and K(G6) taking into account the au-
tomorphism of graph vertices, we obtain the following one-to-one mapping between
the vertex sets of graphs G5 and G6 preserving adjacency: v1↔ u1, v2↔ u5, v3↔ u4,
v4↔ u1, v5↔ u3.

120



Some ideas about connected graphs isomorphism

a) K(G5) b) K(G6)

Fig. 6. Classification tree of the vertices in isomorphic graphs G5 and G6

The developed new invariant can be used in the analysis of graph structures of
big data. The proposed heuristic algorithm makes it possible to establish a bijection
between sets of vertices of isomorphic graphs when solving applied problems.

4. Conclusions

The article describes the following new statements.
1. The linear spaces of all simple cycles and their edge disjoint unions of a simple

graph (cycle space), as well as of all cuts of the graph and their edge disjoint unions
(cut space) are constructed. A estimate of the dimensions of these spaces is given.

2. The canonical form of matrices of basis cycles and basis cuts of the graph is
described. The method of finding these matrices is given.

3. A new invariant of detecting isomorphism of graphs in the form of ordered
by non-decreasing sequences of lengths of all simple cycles of the graph (and their
edge-disjoint unions) and all sections of the graph (and their edge-disjoint unions) is
proposed. It is shown that the coincidence of this invariants gives a new necessary
condition for isomorphism of graphs.

4. We propose a heuristic algorithm for constructing a one-to-one correspon-
dence between sets of vertices of isomorphic graphs using the linear spaces of all
simple cycles and their edge disjoint unions of a simple graph (cycle space), as well
as of all cuts of the graph and their edge disjoint unions (cut space).
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KILKA POMYSŁÓW NA TEMAT IZOMORFIZMU
POŁĄCZONYCH WYKRESÓW

Streszczenie W artykule badamy istnienie izomorfizmów między grafami oraz poszuku-
jemy niezmienników grafów spójnych. Tworzony jest nowy niezmienniczy graf. Metoda
może słuïyć do wykrywania izomorfizmów między grafami spójnymi. W pracy użyto poję-
cia przestrzeni wektorowej wszystkich prostych cykli grafu i ich sum względem rozłącznych
krawędzi oraz przestrzeni wektorowej wszystkich zbiorów grafów uciętych i ich rozłącz-
nych krawędziowo sum. Zbadano metodę konstruowania takich przestrzeni wektorowych:
przestrzeni cyklicznej i przestrzeni cięcia. Podano nowe oszacowanie wymiarów tych tego
typu przestrzeni wektorowych grafów. Otrzymany niezmiennik jest pokazany na konkret-
nym przykładzie. W pracy podano kontrprzykład, aby potwierdzić fakt, że zaproponowany
niezmiennik może być użyty jako warunek konieczny, ale niewystarczający dla izomorfizmu
grafów.

Słowa kluczowe: wykres, cykl, zestaw tnący, przestrzeń wektorowa, niezmienny, algorytm
izomorfizmu
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