PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determining of correlation relationship between roll, pitch, and yaw for UAVs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Currently, UAVs are intensively being introduced into topographic-photogrammetric production for topographic digital aerial photography and laser scanning. These technologies have a number of advantages: they don’t require specially prepared platforms and launchers, they are relatively inexpensive unlike large aircrafts, and they are safe. However, there are still many unsolved problems for ultralight UAVs, especially when the aerial photography is made. As you know, the requirements for the implementation of the aerial survey process are quite stringent, first of all, for horizontal flight: the angles of inclination must be within 3–5 degrees, since exceeding these tolerances significantly affects the accuracy for determining the spatial coordinates of objects. Therefore, there was an idea to conduct researches of dependences between the pitch α, roll ω and yaw κ. For this purpose, 100 images obtained from aircraft-type UAV ‘Arrow’ developed and created by specialists from Lviv Polytechnic National University and ‘Abris’ were used. As a result of the study, the multiple correlation coefficient and the parameters of the linear regression equation for the angular elements of the exterior orientation of digital images were calculated. In addition, statistical quality evaluations for the obtained regression model were carried out. Analysis of the received data allows to assert that angular elements of exterior orientation are correlated with each other. Therefore, in the further imaging materials, processing it becomes possible to make compensation of this fact and to improve calculation accuracy of spatial coordinates of points.
Rocznik
Tom
Strony
13--18
Opis fizyczny
Bibliogr. 12 poz., rys., tab., wykr.
Twórcy
  • Department of Geodesy, University of Agriculture in Krakow, Balicka St. 253a, 30-198, Cracow, Poland
autor
  • Institute of Geodesy, Department of Photogrammetry and Geoinformatics, Lviv Polytechnic National University, 6 Karpinskyi St., 79013, Lviv, Ukraine
  • Institute of Geodesy, Department of Cartography and Geospatial Modelling, 6 Karpinskyi St., 79013, Lviv Polytechnic National University, Lviv, Ukraine
  • Department of Geodesy, University of Agriculture in Krakow, Balicka St. 253a, 30-198, Cracow, Poland
Bibliografia
  • [1] Andropov S. Girik A. Budko M. and Budko M. (2016). Unmanned air vehicle stabilization based on neural network regulator. Scientific and Technical Journal of Information Technologies Mechanics and Optics 16(5):796–800
  • [2] Dierks T. and Jagannathan S. (2010). Output feedback control of a quadrotor UAV using neural networks. IEEE transactions on neural networks 21(1):50–66
  • [3] Gen K. and Chulin N. (2015). Stabilization algorithms for automatic control of the trajectory movement of quadcopter. Science & Education of Bauman MSTU 5:218–235
  • [4] Gong X. Bai Y. Peng C. Zhao C. and Tian Y. (2012). Trajectory tracking control of a quad-rotor UAV based on command filtered backstepping. In 2012 Third International Conference on Intelligent Control and Information Processing pages 179–184. IEEE.
  • [5] Li T. Zhang Y. and Gordon B. W. (2013). Passive and active nonlinear fault-tolerant control of a quadrotor unmanned aerial vehicle based on the sliding mode control technique. volume 227 pages 12–23. SAGE Publications Sage UK: London England.
  • [6] Melnikov D. Kirieev . and Smolych D. (2012). Device based on accelerometer and gyroscope for determining the angular position of an aircraft in space. Science and Youth 11–12:61–64.
  • [7] Roberts A. and Tayebi A. (2011). Adaptive position tracking of VTOL UAVs. IEEE Transactions on Robotics 27(1):129–142 doi:10.1109/TRO.2010.2092870
  • [8] Santos O. Romero H. Salazar S. and Lozano R. (2013). Real-time stabilization of a quadrotor UAV: Nonlinear optimal and suboptimal control. Journal of intelligent&robotic systems 70(1-4):79–91
  • [9] Varzanosov P. and Solodkiy E. (2016). Stabilization of the one-coordinate platform based on stepper motor in microstepping mode. Master’s journal 2:154–158.
  • [10] Xian B. Diao C. Zhao B. and Zhang Y. (2015). Nonlinear robust output feedback tracking control of a quadrotor UAV using quaternion representation. Nonlinear Dynamics 79(4):2735–2752
  • [11] Yi Z. Xiuxia Y. Hewei Z. and Weiwei Z. (2014). Tracking control for UAV trajectory. In Proceedings of 2014 IEEE Chinese Guidance Navigation and Control Conference pages 1889–1894. IEEE.
  • [12] Zazuliak P. Gavrysh V. Yevsieeva E. and Iosypchuk M. (2007). Fundamentals of Mathematical Processing of Geodetic Measurements
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50371a72-df97-4ab2-a42f-91cb66f0dbab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.