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Abstract

A generalization of technique for establishing order preference by similarity to the ideal
solution (TOPSIS) in the intuitionistic fuzzy setting based on the redefinition of intuition-
istic fuzzy sets theory (A− IFS) in the framework of Dempster-Shafer theory (DST ) of
evidence is proposed. The use of DST mathematical tools makes it possible to avoid a
set of limitations and drawbacks revealed recently in the conventional Atanassov’s op-
erational laws defined on intuitionistic fuzzy values, which may produce unacceptable
results in the solution of multiple criteria decision-making problems. This boosts con-
siderably the quality of aggregating operators used in the intuitionistic fuzzy TOPSIS
method. It is pointed out that the conventional TOPSIS method may be naturally treated
as a weighted sum of some modified local criteria. Because this aggregating approach
does not always reflects well intentions of decision makers, two additional aggregating
methods that cannot be defined in the framework of conventional A− IFS based on local
criteria weights being intuitionistic fuzzy values, are introduced. Having in mind that dif-
ferent aggregating methods generally produce different alternative rankings to obtain the
compromise ranking, the method for aggregating of aggregation modes has been applied.
Some examples are used to illustrate the validity and features of the proposed approach.
Keywords: TOPSIS, intuitionistic fuzzy sets, Dempster-Shafer theory, aggregating modes

1 Introduction

An approach to Order Preference based on the
Similarity to Ideal Solution (TOPSIS) proposed by
Hwang and Yoon [1] with its different modifica-

tions nowadays is probably most frequently used
to solve multiple criteria decision making (MCDM)
problems. A comprehensive review of 266 pa-
pers devoted to applications and methodology of
this approach presented in 103 scientific journals
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since 2000 is made in [2]. A more fresh survey
of the conventional TOPSIS method applications in
the crisp (real-valued) environment is presented in
[3]. In [4], the fuzzy TOPSIS applications in the
last decade are analyzed and systematized. There
are many approaches to the fuzzy extension of the
TOPSIS method proposed in the literature. Most
of them cannot be recognized as complete ones as
ideal solutions are often assumed to be real values
(not as fuzzy ones) or are not achievable in the de-
cision matrix [5, 6, 7, 8, 9, 10]. Often a defuzzifi-
cation of fuzzy components of a decision matrix is
applied [5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20].
This causes a crucial informational loss and, as a
consequence, often unacceptable results. The less
critical simplifications were made in [21, 22, 23, 24,
25, 26, 27], but some limitations of the proposed in
these papers methods remain and were analyzed in
[28]. In this paper, a new direct fuzzy extension of
the TOPSIS method, free of the limitations of the
known methods, was developed.

Nowadays, intuitionistic fuzzy sets introduced
by Atanassov [29], which based on the reasons
noted in [30] will be hereinafter abbreviated as
A − IFS, are the most frequently used extension
of fuzzy sets met in the scholarly literature. Ac-
cording to recent studies [31], the Scopus database
gives 3048 document results if the keyword “intu-
itionistic fuzzy” (IF) is in the article title. Since
A − IFS are mainly used to solve MCDM tasks,
there are many papers in the literature devoted to the
IF and interval-valued intuitionistic fuzzy (IV IF)
extensions of the TOPSIS method [32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
50, 51]. Of course, this list of papers can be con-
siderably extended, but we do not intend to make
here a comprehensive overview of them, because
for us the most important thing that unites these
publications is the use of Atanassov’s operational
laws defined on intuitionistic fuzzy values IFV s
and on interval-valued intuitionistic fuzzy values
IV IFV s. Currently, the intuitionistic fuzzy exten-
sions of the TOPSIS method are based on the clas-
sical Atanassov’s arithmetical operations with IFV s
(see [52, 53] and the comparison rule in [54]). The
interval-valued intuitionistic fuzzy extensions of the
TOPSIS method are based on the direct interval ex-
tension of the classical operational laws defined on
IFV s [36, 37, 55, 56].

Meanwhile, in our recent paper [57], it is shown
that Atanassov’s operations with IFV s, including
the aggregating operations and operation of com-
parison, possess six negative properties revealed to
date in [57] that may lead (sometimes, but not al-
ways) to undesirable counter-intuitive results in the
solution of MCDM problems. In our opinion, this
is not so surprising as some difficult to justify fea-
tures of their definitions can be easily observed, e.g.
usual multiplication is used in the definition of the
sum operation and the power operation completely
defines the multiplication by a scalar.

Having in mind this problem, in [57, 58], we
demonstrated the existence of the strong correla-
tion between the intuitionistic fuzzy sets theory and
the Dempster-Shafer theory of evidence (DST ). It
was shown in [57] that operations with IFV s might
be redefined in the framework of DST and substi-
tuted with the operations with belief intervals BI.
Moreover, based on some relevant theorems it was
proved in [57] that the introduced new set of op-
erations with belief intervals representing IFV s is
free of drawbacks of the classical Atanassov’s op-
erations with IFV s. Besides, the semantic of DST
allows us to introduce new operations that cannot
be defined in the framework of canonical A− IFS
theory.

Looking ahead a bit, we note that in [59]
we paid attention to some incompleteness of the
classical definitions of interval-valued intuitionistic
fuzzy sets IV IFS and values IV IFV s introduced in
[60, 61]. To solve this problem, we proposed new
improved definitions of IV IFS and IV IFV s in the
framework of A−IFS theory and DST and the asso-
ciated set of new operations with interval extended
belief intervals that represent IV IFV s. However,
here we will limit ourselves only to considering the
problems of IF extension of the TOPSIS method.

For today we have found in the literature only
one paper [62] devoted to our approach based on the
treatment of IFV s in the framework of DST to the
IF extension of the TOPSIS method. The authors
correctly transformed an initial intuitionistic-valued
decision matrix into a matrix composed of BIs, but
then they introduced the highly complicated and
non-clear definitions for the distance between BIs
as well as for ideal solutions, e.g. the positive ideal
solutions were assumed to be BIs with maximal at-
tainable belief values and minimal attainable plausi-
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bility values and so on. In our opinion, such defini-
tions introduced in [62] without a substantive anal-
ysis of the problem cannot be reasonable treated in
a natural way. So we can say that the paper [62] can
be considered only as the first attempt to introduce
the IF extension of the TOPSIS method.

When choosing an appropriate method to solve
athe MCDM problem, the approaches, which allow
us to use more information available or more cor-
rect operational laws are usually recognized to be
better ones, especially when they are based on novel
operations that cannot be introduced in the realm of
known traditional methods.

In [28], we showed that the distances between
rates of alternatives and ideal solutions may be con-
sidered (in a broad sense) as modified weighted
sums of some local criteria. Weighted sums are
of course a most popular, but not always the best
approach to aggregate local criteria in many real-
world tasks, as extremely low rates of some local
criteria can be counterbalanced in the weighted sum
with great rates of some rest local criteria that in
some problem at hand may occur to be not so im-
portant for a decision maker. As a consequence, in
some fields, e.g. in ecological modeling, the use of
weighted sum aggregations is forbidden at all [63].

Therefore, in the current paper, we introduce
in the framework of IF extended TOPSIS method,
besides the weighted sum, some other approaches
to the local criteria aggregation. When solving
complex real-world problems, different aggregation
modes may be applied and they usually generate
different rankings of alternatives. So, the problem
of aggregation of aggregation modes arises. There-
fore, the method developed in [64] for the aggrega-
tion of used aggregating modes, based on the syn-
thesis of Type 2 and Level 2 fuzzy sets will be
used. It is worthy to note that we have successfully
used this approach to generalize the fuzzy exten-
sion of the TOPSIS method [28]. The rest of the
paper is set out as follows: In Section 2, we recall
some definitions needed for our analysis. Section
3 presents our approach to the generalization of the
TOPSIS method in the intuitionistic fuzzy setting
in the framework of the evidence theory. A numer-
ical example is presented in Section 4. Section 5
concludes the paper with some remarks.

2 Preliminaries

2.1 The basic definitions of the TOPSIS
method

Let a MCDM problem comprises m alternatives
Al1, Al2,...,Alm and n local criteria LC1, LC2,...,LCn.
All the rates assigned to alternatives according to
local criteria are presented in the decision matrix
D[di j]m×n, where di j is the rate of Ali with respect to
LCj. Then let CW = (cw1,cw2, ...,cwn) be the vec-
tor of local criteria weights such that ∑n

j=1 cw j = 1.

The conventional TOPSIS method involves five
steps [1]:

1. The normalization of decision matrix

xi j =
di j√

∑m
k=1 d2

k j

, i = 1, ...,m; j = 1, ...,n. (1)

The weighting procedure:

ri j = cw j × xi j, i = 1, ...,m; j = 1, ...,n. (2)

2. Determination of the positive ideal and negative
ideal solutions, respectively

S+ = {r+1 ,r
+
2 , ...,r

+
n }=

= {(maxi ri j | j ∈ Kb) (mini ri j | j ∈ Kc)},
(3)

S− = {r−1 ,r
−
2 , ...,r

−
n }=

= {(mini ri j | j ∈ Kb) (maxi ri j | j ∈ Kc)},
(4)

where Kb and Kc are sets of benefit and cost cri-
teria, respectively.

3. Calculating the distances of the existing alterna-
tives from the positive ideal and negative ideal
solutions: two Euclidean distances for each al-
ternatives are, respectively, calculated as follows

Di+i =
√

∑n
j=1 (ri j − r+j )2, i = 1, ...,m,

Di−i =
√

∑n
j=1 (ri j − r−j )2, i = 1, ...,m.

(5)

4. Calculation of the relative closeness to the ideal
alternatives

Ri =
Di−i

Di+i +Di−i
, i = 1,2, ...,m, 0 ≤ Ri ≤ 1.

(6)

5. Ranking alternatives concerning to their relative
closeness to the ideal alternatives: the greater is
Ri, the more acceptable is the alternative Ali.
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2.2 Conventional operational laws defined
on intuitionistic fuzzy values and their
shortcomings

Atanassov [29] defined A-IFS as follows.
Definition 1. Let Y = {y1,y2, ...,yn} be a finite
universal set. An intuitionistic fuzzy set B in
Y is the following mathematical object: B = {<
y j,µB(y j),νB(y j) > |y j ∈ Y}, where the functions
µB : Y → [0,1], y j ∈ Y → µB(y j) ∈ [0,1] and νB :
Y → [0,1], y j ∈ Y → νB(y j) ∈ [0,1] present the de-
gree of membership and degree of non-membership
of element y j ∈Y to the set B ⊆Y , respectively, and
for any y j ∈ Y , 0 ≤ µB(y j)+νB(y j)≤ 1. Atanassov
[29], called πB(y j) = 1 − µB(y j)− νB(y j) the in-
tuitionistic index (or the hesitation degree) of the
element y j in the set B. Then for any y j ∈ Y we
have 0 ≤ πB(y j)≤ 1. The operations of addition ⊕
and multiplication ⊗ on IFV s were introduced by
Atanassov [65]. Let X = ⟨µX ,νX⟩ and Y = ⟨µY ,νY ⟩
be IFV s. Then

X ⊕Y = ⟨µX +µY −µX µY ,νX νY ⟩ , (7)

X ⊗Y = ⟨µX µY ,νX +νY −νX νY ⟩ . (8)

Based on (7) and (8), in [66] for any integer
n=1,2,.. the following operations were defined:
nX = X ⊕ ...⊕X = ⟨1− (1−µX)

n,νn
X⟩, Xn = X ⊗

...⊗X = ⟨µn
X ,1− (1−νX)

n⟩.
It was shown later that the last operations are

resulted in IFV s not only for integer n, but also for
all real values λ > 0, i.e.

λX =
⟨

1− (1−µX)
λ,νλ

X

⟩
, (9)

Xλ =
⟨

µλ
X ,1− (1−νX)

λ
⟩
. (10)

The above operations possess conventional al-
gebraic properties:

Theorem 1. [54]. Let X = ⟨µX ,νX⟩ and Y =
⟨µY ,νY ⟩ be IFV s. Then

X ⊕Y = Y ⊕X , X ⊗Y = Y ⊗X ,

λ(X ⊕Y ) = λX ⊕λY, (X ⊗Y )λ = Xλ ⊗Y λ,
λ(X ⊕Y ) = λX ⊕λY,
λ1X ⊕λ2X = (λ1 +λ2)X , λ1,λ2 > 0,
Xλ1 ⊗Xλ2 = Xλ1+λ2 , λ1,λ2 > 0.

(11)

For the solution of MCDM problems in the intu-
itionistic fuzzy setting based on the operations (7)-
(10), we can aggregate local criteria as follows

For IFA1, ..., IFAn being IFV s representing the

rates of local criteria and cw1, ...,cwn,
n
∑

i=1
wi = 1,

being their real-valued weights we obtain:

Intuitionistic Weighted Arithmetic Mean
(IWAM)

IWAM = cw1IFA1 ⊕ cw2IFA2 ⊕ ...⊕ cwnIFAn =⟨
1−

n
∏
i=1

(1−µIFAi)
cwi ,

n
∏
i=1

νcwi
IFAi

⟩
,

(12)
and the Intuitionistic Weighted Geometric Arith-
metic operator (IWWG)

IFWG = IFAcw1
1 ⊗ IFAcw2

2 ...⊗ IFAcwn
n =⟨

n
∏
i=1

µcwi
i ,1−

n
∏
i=1

(1−νi)
cwi

⟩
.

(13)

It is easy to prove that the final rates of alterna-
tives represented by (12),(13) are IFV s and there-
fore the problem of IFV s comparison arises. To
solve it in [67] the so-called score function (or net
membership) S(x) = µ(x)− ν(x), where x is IFV
was introduced. As a valuable complement to the
score function, in [68] the so-called accuracy func-
tion H(x) = µ(x)+ν(x) was proposed. It was noted
in this paper that the link between functions S and
H is similar to that between mean and variance in
statistics. In [54], the functions S and H are applied
to introduce the rule of comparison of IFV s x and y
as follows

S(x) = µx −νx, S(x) ∈ [−1,1],
H(x) = µx +νx, H(x) ∈ [0,1].

(14)

I f (S(x)> S(y)), theny issmaller thanx;
I f (S(x) = S(y)), then
(1) I f (H(x) = H(y)), thenx = y;
(2) I f (H(x)< H(y)) thenx issmaller thany.

(15)
Even at the first glance, the above operations on
IFV s seem to be somewhat strange. For exam-
ple, the presence of usual multiplication and es-
pecially subtraction operation in the definition of
IFV s addition (7) looks curiously or at least as a
brave heuristic. The usual addition and subtraction
operations in the definition of IFV s multiplication
(8) look no less strange as well as the multiplication
of IFV by a scalar (9) completely defined by the
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tives represented by (12),(13) are IFV s and there-
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Even at the first glance, the above operations on
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pecially subtraction operation in the definition of
IFV s addition (7) looks curiously or at least as a
brave heuristic. The usual addition and subtraction
operations in the definition of IFV s multiplication
(8) look no less strange as well as the multiplication
of IFV by a scalar (9) completely defined by the
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usual power operation. Perhaps this is an incom-
plete list of strangeness concerned with the conven-
tional operational laws defined on IFV s and more
inconsistencies may be found with a deeper analy-
sis. On the other hand, one can say that the noted
above incomprehensibilities are not described in a
strong mathematical form and do not matter since
the operations with IFV s (7)-(10) provide IFV s as
well and the important algebraic properties (11) are
held. Therefore besides the above general, but not
so strict qualitative consideration of the raised prob-
lem, in our paper [57], using strictly mathematical
tools and argumentation we showed that the oper-
ations (7)-(10), (12) and (15) are burdened with a
number of undesirable features which may provide
unexpected non-acceptable results in the solution of
MCDM problems and in collateral applications:

1. The operation of IFV s addition (7) is not an
addition-invariant operation.

2. The operation (9) is not preserved under multi-
plication by a usual real value λ > 0.

3. The weighted sum aggregation operation (12)
is not consistent with the aggregation operation
on the ordinary fuzzy sets (Ordinary Weighted
Arithmetic Mean OWAM).

4. The aggregating operation (12) is not monotone
with respect to the ordering (15).
The validity of the above statements supported
by convincing numerical examples was proved
in [57]. Later we have found some additional
bad properties of the operations (8), (13) and
(15).

5. The multiplication (8) is not always monotone
with respect to the ordering (15). Consider the
following example:
Example 1. Let x = ⟨0.1,0.3⟩, y = ⟨0.4,0.5⟩,
z = ⟨0.2,0.1⟩. Then S(x)=-0.2, S(y)=-0.1 and
from (15) we get y > x.

Meanwhile, x ⊗ z = ⟨0.02,0.37⟩, y ⊗ z =
⟨0.08,0.55⟩, S(x ⊗ z) = −0.35, S(y ⊗ z) =
−0.47. So we have S(x ⊗ z) > S(y ⊗ z) and
x⊗ z > y⊗ z opposite to y > x.

6. The aggregating operation (13) is not monotone
with respect to the ordering (15). Consider the
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Let x = ⟨0.4,0.5⟩, y = ⟨0.35,0.448⟩,
z = ⟨0.5,0.5⟩, cw1=0.5, cw2=0.5.
Since S(x)=-0.1 and S(y)=-0.098
we have y > x.

Meanwhile, since IWGM(x,z)=⟨0.4472,0.5⟩,
IWGM(y,z)=⟨0.41833,0.474643⟩,
S(IWGM(x,z))=-0.0528 and
S(IWGM(y,z))=-0.0563 we obtain
IWGM(x,z)> IWGM(y,z) opposite to the y> x.

It is worthy to note that one of the important
limitations of Atanassov’s A− IFS is that the ag-
gregating operator IWWG (13) can be defined only
in the case of real-valued local criteria weights, al-
though in applications such weights can be pre-
sented by IFV s. This limitation is easy to explain
since the operation xy for x and y being IFV s does
not exist in the body of Atanassov’s A− IFS.

Of course, we do not insist here that we have
revealed all the existing negative properties of the
conventional operations with IFV s. Nevertheless,
what we have already found is enough for us to
make the best of possible to solve the problem with
operational laws defined on IFV s. To do this, so
that to avoid the above-described shortcomings and
limitations of classical A− IFS following the paper
[57], we will use here an approach based on the re-
definition of Atanassov’s IFS in the framework of
DST .

2.3 Interpretation of A-IFS in the frame-
work of DST

First we present a set of basic definitions of
DST reduced to the necessary for our analysis ex-
tent. The DST was developed by Dempster [69, 70]
and Shafer [71]. Its basics definitions may be pre-
sented as follows. Assume C is a subset of X. A
subset C may also be treated as a question or propo-
sition and X as a set of propositions or mutually
exclusive hypotheses or answers [72]. A DST be-
lief structure has the associated mapping m, called
basic assignment function (or mass assignment
function), from subsets of X into a unit interval,
m : 2X → [0,1] such that m( /0) = 0, ∑

Z⊆X
m(Z) = 1.

The subsets of X with non-zero values are called
focal elements.

The null set is never a focal element. The mea-
sures of belief and plausibility associated with DST
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belief structure were introduced in [71] as follows.

The measure of belief is a mapping Bel : 2X →
[0,1] such that for any subset Y of X

Bel(Y ) = ∑
/0̸=Z⊆Y

m(Z). (16)

The measure of plausibility associated with m is a
mapping Pl : 2X → [0,1] such that for any subset Y
of X

Pl(Y ) = ∑
Z∩Y ̸= /0

m(Z). (17)

It is seen that Bel(Y) ≤ Pl(Y).

An interval [Bel(Y),Pl(Y)] is called the belief in-
terval (BI). The belief interval is of dual nature: it
can be treated as an usual regular interval contain-
ing a true probability or a true power of some state-
ment (argument, proposition, hypothesis, ets) [72].
In [58], we showed that the triplet µZ(x), νZ(x),
πZ(x) represents a correct basic assignment func-
tion in DST so that IFV Z(x)=⟨µZ(x),νZ(x)⟩ may
be redefined as follows
Z(x) = BIZ(x) = [BelZ(x),PlZ(x)]
= [µZ(x),1−νZ(x)]
(see [57, 58] for more details and formal defini-
tions). At first glance, this transformation seems to
be a simple rewriting of A-IFS in terms of interval-
valued fuzzy sets, but in [57, 58] we showed that the
use of DST semantics allows us to boost the perfor-
mance of A-IFS when using the operational laws
defined on IFV s to solve MCDM tasks.

Also, it was shown in [57] that the operations
with IFV s X and Y could be transformed to the cor-
responding operations on the belief intervals BI(X)
and BI(Y ).

Nevertheless, one methodologically meaningful
characteristic of the proposed transformation was
not noted in [57]: to represent all the basic concepts
of IFS theory in the realm of DST only a small
part of the mathematical tools of DST should be ap-
plied. Therefore we can say that the IFS theory may
be qualified as an asymptotic approximation of the
more general DST . This is not so unexpected, as it
was proved that the possibility theory (and as a con-
sequence, the fuzzy sets theory) and the probability
theory are some asymptotic cases of DST which are
valid in some predefined limiting conditions. Obvi-
ously, this does not mean that asymptotic theories

are somewhat second rate. On the contrary, in spe-
cific applications they often allow the problem to
be formulated more transparently and more simply
than more general basic theories. On the other hand,
when the limitations of the asymptotic theory don’t
allow us to solve a problem in the specific frame-
work of this theory, we always have two approaches
to solve the problem: using heuristics approaches
or redefining the problem using a more general the-
ory. It is easy to see that here we choose the second
approach (the use of DST ) which allows us to get
rid of the restrictions and drawbacks of Atanassov’s
IFS theory.

In [57], the set of operations with IFV s defined
as operations with belief interval was introduced.

These operations were developed in such a way
that they provide as the results BIs, i.e. intervals
which belong to [0,1]. In this context, the addi-
tional assumptions of a rather methodological na-
ture were made to infer the operation of BIs addi-
tion as using the conventional rule of interval ad-
dition does not always provide a result in the form
of BI. These assumptions were based on the dual
nature of BI [72] as follows. Let Z be subsets of
X. According to [72], in the context of DST a be-
lief interval BI(Z) = [Bel(Z),Pl(Z)] may be treated
not only as a usual interval (in the sense of interval
arithmetic), but also as an interval enclosing a true
power of statement (argument, proposition, hypoth-
esis, ets) that x ∈ X belongs to the set Z ⊆ X . It is
clear that the value of such a power belongs to the
unit interval [0,1].

Consider the statement, e.g. “the weather is
warm”, with some degree of truth that belongs to
the corresponding BI. If we repeat this statement
once more or even make that many times, the truth
value of that considered sentence does not change.
It is easy to conclude that the above consideration
makes sense only if the following property of the
belief interval addition is held: BI(Z) = BI(Z) +
BI(Z) + ...+BI(Z). This is feasible if the opera-
tion of belief intervals addition ⊕ is defined as fol-
lows BI(Z)⊕BI(Z)=

[
Bel(Z)+Bel(Z)

2 , Pl(Z)+Pl(Z)
2

]
. So

the sum of belief intervals is their average interval
value. As a consequence, for n different statements
Si, i=1 to n represented by belief intervals BI(Ai)
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their sum is defined as follows

BI(S1)⊕BI(S2)⊕ ....⊕BI(Sn) =[
1
n

n
∑

i=1
Bel(Si),

1
n

n
∑

i=1
Pl(Si)

]
.

(18)

The other operations with BIs were defined in [57]
treating them as regular ones (in the sense of inter-
val arithmetic) as follows

BI(Y )⊗BI(Z) = [Bel(Y )Bel(Z),Pl(Y )Pl(Z)].
(19)

λBI(Y ) = [λBel(Y ),λPl(Y )], (20)

where λ ∈ [0,1] is a real value. This operation
makes sense only for λ < 1 since in the opposite
case it does not always produce a true belief inter-
val. This limitation is not so important when we
define operations with BIs to solve MCDM prob-
lems, where the values of λ are less than 1 as they
represent weights of local criteria.

BI(Y )λ = [Bel(Y )λ,Pl(Y )λ], (21)

where λ ≥ 0.

BI(Y )BI(Z) = [Bel(Y )Pl(Z),Pl(Y )Bel(Z)]. (22)

It is worth noting that this useful operation is ab-
sent in the framework of Atanassov’s A− IFS. Us-
ing some relevant theorems it was proved in [57]
that the introduced operational laws on BIs possess
good algebraic properties (the same as (11)). From
(18) and (20) we infer the Intuitionistic Weighted
Arithmetic Mean operator:

IWAMDST =

[
1
n

n

∑
i=1

cwiBeli,
1
n

n

∑
i=1

cwiPli

]
. (23)

This is not an idempotent aggregating operator, but
its multiplication by n gives us the idempotent op-
erator

IWAMDST =

[
n

∑
i=1

cwiBeli,
n

∑
i=1

cwiPli

]
. (24)

It is seen that operators (23) and (24) provide the
same orderings of competing alternatives. Based on
expressions (19) and (21), the Intuitionistic Fuzzy
Weighted Geometric operator IFWGDST is defined
as follows

IFWGDST =

[
n

∏
i=1

Belcwi
i ,

n

∏
i=1

Plcwi
i

]
. (25)

From (19) and (22), the Intuitionistic Fuzzy
Weighted Geometric operator IFWGBDST with
weights presented by BIs is inferred as follows

IFWGBDST =

[
n

∏
i=1

BelPli
i ,

n

∏
i=1

PlBeli
i

]
. (26)

We can see that the subtraction and division oper-
ations are not presented and not discussed in the
framework of conventional Atanassov’s IFS and
IV IFS theories. It may be so that the appropriate
and useful heuristic mathematical expressions for
such operations with acceptable properties were not
found for simple reasons because they are not really
needed. There are no these operations in the frame-
work of our approach as well since the direct BI ex-
tensions of the real-valued interval subtraction and
division operations do not always produce BIs as
the results and the linguistic treatment of BIs used
above to introduce the addition operation with BIs
does not help to infer the operations of BIs subtrac-
tion and division with acceptable properties. So on
today’s stage of studies, we have to admit that the
absence of subtraction and division operations is an
inherent limitation of IFS theory and its generaliza-
tion in the realm of DST . However it may be a relief
to recognize that in general the IFS theory with its
extensions is used to the solution of MCDM prob-
lems and related accompanying problems when op-
erations of IFV s subtraction and division are not
needed at all.

The operators of BIs comparison were defined
as follows

i f (Bel(A)+Pl(A))> (Bel(B)+Pl(B))
then BI(B)< BI(A),
i f (Bel(A)+Pl(A)) = (Bel(B)+Pl(B))
then BI(B) = BI(A).

(27)

The introduction of such a simple operation of BIs
comparison as (27), which actually is the simple
comparison of BIs midpoints, is not so obvious and
needs transparent and persuasive justification. In
our paper [28], we provided the comparative analy-
sis of known approaches to the real-valued interval
comparison and showed that without loss of accu-
racy it can be simplified to the comparison of inter-
vals midpoints. Generally this is not so surprising
conclusion because even in the relatively early pa-
per [73], it was emphasized that most of the known
methods developed to compare intervals are “to-
tally based on the midpoints of interval numbers”.



164 Ludmila Dymova, Krzysztof Kaczmarek, Pavel Sevastjanov, Łukasz Sułkowski, Krzysztof Przybyszewski

Therefore here we present only a brief review of the
results obtained in the studies presented in [28].

Since BIs may be treated as regular interval
ones, the problem of BIs comparison is reduced to
the problem of interval comparison. In the litera-
ture, we can find many different approaches to the
interval comparison (see comprehensive reviews in
[74] and [75]). Currently, the most popular meth-
ods for interval comparison are heuristic ones pro-
posed in [76, 77, 78, 79]. These methods allow
us to estimate the possibility for an interval to
be greater/lesser than another one. It was proved
in [80] that they are equivalent. The probability-
based methods were analyzed in [81], where a
fuzzy two-criteria method for the interval compari-
son was developed as well. Perhaps the most com-
plex approach to interval comparison is the method
proposed in [74], based on the seemingly some-
what unexpected but logically sound suggestion
that since arithmetic operations with intervals give
us intervals, the results of their comparison should
also be intervals (more strictly BIs).

Therefore, taking into account the visible lack
of consensus in the field of interval comparison,in
[28] we presented the results of comparative analy-
sis of the most sound methods for the interval com-
parison based on a wide set of persuasive numer-
ical examples. The results seem to be somewhat
unexpected since it was shown that the simplest
method of intervals midpoints comparison produces
more reasonable results than the more complicated
approaches considered. It is also very important
that the difference between midpoints of compared
intervals occurred to be quantitatively almost the
same as the known Hamming and Euclidean dis-
tances between intervals and therefore can serve
as a measure of intervals inequality even when
there is no their common area. It is easy to see
that when comparing the midpoints of intervals,
we must treat intervals with common midpoints as
equal, although their widths may be different. To
avoid this seemingly obvious flaw, a two-criteria
approach to the interval comparison was developed
in [81], but later we realized that actually there is
no flaw since we are dealing with an inherent fea-
ture of interval analysis. A regular interval may be
naturally interpreted as a support of some uniform
probability distribution. Let X and Y be such distri-
butions with common mean and different variances.

Since using statistical methods it is impossible to
prove that X > Y or X < Y , the only logically justi-
fied option is that X = Y , i.e. the compared inter-
vals are equal ones. The advantages of the approach
to the interval comparison based on their midpoints
comparison were presented in [28], where it is also
shown that this simplest approach is more in line
with common sense than other analyzed methods.
It is important also that this method is not of pure
heuristic nature, as it may be inferred based directly
on the analysis of the interval subtraction operation.

Nevertheless, we recognize that generally the
interval comparison is a context-dependent prob-
lem. So in the concrete real-world situations the use
of other more complicated approaches, e.g. such
that proposed in [81] or [74] may be justified.

However, in the current paper we will use the
simplified but justified rule of comparison (27).

Using corresponding theorems, it was proved in
[57] that introduced set of operations (18)-(27) with
belief intervals representing IFV s is free of draw-
backs and limitations of conventional A− IFS de-
scribed in Subsection 2.2.

3 The generalization of the TOPSIS
method in the intuitionistic fuzzy
setting in the framework of evi-
dence theory

3.1 A new interpretation of classical
TOPSIS method

A new interpretation of the TOPSIS method
have been proposed in our paper [28] in context of
the fuzzy TOPSIS method. Here we present it on
the base of the classical definition of the TOPSIS
method (1)-(6).

Let ri j be normalized, but not yet a weighted
component of the decision matrix. Then using pro-
cedures (3) and (4) we obtain the positive r+j and
negative r−j ideal solutions attainable in the decision
matrix.
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Then it is easy to see that from expressions (3)
and (4) we have:

r+j ≥ ri j, i = 1,2, ...,m, j ∈ Kb,

ri j ≥ r+j , i = 1,2, ...,m, j ∈ Kc,

ri j ≥ r−j , i = 1,2, ...,m, j ∈ Kb,

r−j ≥ ri j, i = 1,2, ...,m, j ∈ Kc.

(28)

Therefore, there is no need to use n-dimensional
Euclidean or Hamming distances to obtain S+i and
S−i , i = 1,2, ...,m, as they can be calculated as fol-
lows

S+i = ∑
j∈Kb

w j(r+j − ri j)+ ∑
j∈Kc

w j(ri j − r+j ),

S−i = ∑
j∈Kb

w j(ri j − r−j )+ ∑
j∈Kc

w j(r−j − ri j),

i = 1, ...,m.

(29)

Then we can conclude that the non-negative differ-
ences

r+j − ri j, i = 1,2, ...,m, j ∈ Kb,

ri j − r+j , i = 1,2, ...,m, j ∈ Kc,

ri j − r−j , i = 1,2, ...,m, j ∈ Kb,

r−j − ri j, i = 1,2, ...,m, j ∈ Kc.

(30)

can be naturally treated as some modified values
of local criteria based on the initial ones. So ex-
pressions (29) may be considered as the modified
weighted sum aggregations of modified local cri-
teria. This introduced a small modification of the
canonical TOPSIS method, i.e., the determination
of ideal solutions before the weighting procedure
in (29) does not violate the general idea of the
TOPSIS method, but as it will be shown below, is
very fruitable and allows us to boost considerably
the effectiveness of the method. It is important that
aggregation (29) cannot be treated as unique nor as
the best one within the framework of the TOPSIS
method in all cases.

An important property (which can be positive
of negative depending on the problem at hand) of
weighted sum aggregation is that the unacceptable
small values of some local criteria may be com-
pensated by great values of some rest ones in the
final assessment (It was noted in Introduction that
this aggregation mode is not used at all in some
fields). Since this property of weighted sum often
is undesirable, a decision-maker may prefer to use,
e.g. the weighted geometric aggregation and a more
cautious decision-maker may prefer the aggregation

based on the “principle of maximal pessimism” pro-
posed by Yager [82]. Generally, the choice of ag-
gregation method is a context-dependent problem
[83].

Let µ1(LC1), ...,µn(LCn) be the values of lo-
cal criteria LC1, ...,LCn and cw1, ...,cwn be their
weights.

There are many aggregation modes proposed in
the literature, but here we will use only the most
popular ones, which are also often used as basic
ones to build more complex aggregating operations

Ag1 =
n

∑
j=1

cw jµ j(LCj), (31)

Ag2 = min(µ1(LC1)
cw1 ,µ2(LC2)

cw2 , ...,µn(LCn)
cwn),
(32)

Ag3 =
n

∏
j=1

µ j(LCj)
cw j . (33)

3.2 Implementation of aggregation modes
Ag1, Ag2 and Ag3 in intuitionistic fuzzy
TOPSIS method in the framework of
evidence theory

Let us consider a MCDM problem which is
based on m alternatives Al1, Al2,...,Alm and n local
criteria LC1, LC2,...,LCn. Each alternative is eval-
uated with respect to the n criteria. Let all rat-
ings assigned to alternatives and are intuitionistic
fuzzy values. Then the decision matrix may be pre-
sented as follows D

[⟨
µi j,νi j

⟩]
m×n , i = 1,2, ...m,

j = 1,2, ...,n, where
⟨
µi j,νi j

⟩
is the IF-valued rat-

ing of alternative Ali with respect to the local crite-
rion LCj.

Let W =
{⟨

µcw j,νcw j
⟩}

, j = 1,2, ...,n, be the
IF-valued vector of local criteria weights. Let us
replace intuitionistic fuzzy values in the decision
matrix and in the the vector of weights by corre-
sponding belief intervals as follows
BIi j = [Beli j,Pli j] , Beli j = µi j, Pli j = 1− νi j, i =
1,2, ...m, j = 1,2, ...,n,
BIcw j = [Belcw j,Plcw j] , Belcw j = µcw j, Plcw j = 1−
νcw j, j = 1,2, ...,n.
According to (18) a sum of BIs is always a BI be-
longing to the unit interval [0,1] as well. Therefore
an additional normalization of the decision matrix
is not needed. Then using the rule of belief inter-
val comparison (27), the positive ideal and negative
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ideal solutions can be obtained from the expressions

BI+ =
{[

Bel+j ,Pl+j
]}

= {maxi
{
[Beli j,Pli j]

}
| j ∈ Kb ,

mini
{
[Beli j,Pli j]

}
| j ∈ Kc },

BI− =
{[

Bel−j ,Pl−j
]}

= {mini
{
[Beli j,Pli j]

}
| j ∈ Kb ,

maxi
{
[Beli j,Pli j]

}
| j ∈ Kc },

(34)
where Kb is a set of benefit criteria and Kc is a set
of cost criteria.
Of course, one can say that the natural restric-
tions [0,0] � [Beli j,Pli j] � [1,1], i = 1,2, ...m, j =
1,2, ...,n, provide automatically the positive and
negative ideal solutions as the intervals [1,1] and
[0,0], respectively. In our opinion, such an ap-
proach seems to be not only significantly simpler
than that based on the expressions (34), but may be
more justified in some situations. However, here
we will try to adhere to the canonical approach as
much as possible. Let us consider the weighted
sum type of aggregation Ag1. Then the expres-
sions for the calculation of the distances S+i and S−i ,
i = 1,2, ...,m, may be obtained as the belief interval
extension of expressions (29) as follows

S+Ag1i
= ∑

j∈Kb

([
Belcw j,Plcw j

]
⊗
([

Bel+j ,Pl+j
]
−
[
Beli j,Pli j

]))
+

∑
j∈Kc

([
Belcw j,Plcw j

]
⊗
([

Beli j,Pli j
]
−
[
Bel−j ,Pl−j

]))
,

S−Ag1i
= ∑

j∈Kb

([
Belcw j,Plcw j

]
⊗
([

Beli j,Pli j
]
−
[
Bel−j ,Pl−j

]))
+

∑
j∈Kc

([
Belcw j,Plcw j

]
⊗
([

Bel−j ,Pl−j
]
−
[
Beli j,Pli j

]))
, i = 1, ...,m.

(35)
We can see that to use S+Ag1i

and S−Ag1i
presented in

(35) for the subsequent analysis, the distance be-
tween belief intervals should be defined.

Since belief intervals are regular ones here, fol-
lowing to our papers [28, 84], we will use directly
the operation of interval subtraction [85] to define
the distance between intervals. This approach al-
lows us to calculate also the possibility that an in-
terval is greater/lesser that another one.

For intervals X = [xL,xU ] and Y = [yL,yU ], their
subtraction results in the interval Z=X −Y =[zL,zU ];
zL = xL − yU , zU = xU − yL. It is seen that for over-
lapping intervals X and Y , we always get a negative
left bound of interval Z and a positive right bound.

Then, to obtain a measure of distance between
intervals which additionally indicates which inter-
val is greater/lesser, we will apply the expression

∆(X ,Y ) =
1
2
(
(xL − yU)+(xU − yL)

)
. (36)

It is seen that for intervals X and Y with a common
midpoint, ∆(X ,Y ) is always equal to 0. The expres-
sion (36) may be presented in the form:

∆(X ,Y ) =
(

1
2
(xL + yU)− 1

2
(xU + yL)

)
. (37)

We can see that the expression (37) is the distance
between midpoints of compared intervals X and Y .
It is shown in [28, 84] that the presented method
may also be successfully used for the interval com-
parison and that the values of distances between in-
tervals are nearly the same as Hamming and Eu-
clidean distances when intervals have a common
area and when they do not have any intersection.

Then based on the above results we can in-
troduce the distances between belief intervals in
(35). The midpoints of corresponding belief inter-
vals may be calculated as follows

p+j =
Bel+j +Pl+j

2 , p−j =
Bel−j +Pl−j

2 ,

li j =
Beli j+Pli j

2 ,
(38)

i = 1,2, ...,m, j = 1,2, ...,n.

Then the distances from ideal solutions may be
presented as follows

p+j − li j, i = 1,2, ...,m, j ∈ Kb,

li j − p+j , i = 1,2, ...,m, j ∈ Kc,

li j − p−j , i = 1,2, ...,m, j ∈ Kb,

p−j − li j, i = 1,2, ...,m, j ∈ Kc.

(39)

Therefore, the expressions (35) can be transformed
as follows

S+Ag1i
= ∑

j∈Kb

(
[Belcw j,Plcw j]⊗

(
p+j − li j

))
+

∑
j∈Kc

(
[Belcw j,Plcw j]⊗

(
li j − p+j

))
,

S−Ag1i
= ∑

j∈Kb

(
[Belcw j,Plcw j]⊗

(
li j − p−j

))
+

∑
j∈Kc

(
[Belcw j,Plcw j]⊗

(
p−j − li j

))
,

(40)
i = 1,2, ...,m.

Then using the multiplication by scalar opera-
tion (20), we get from (40) the real-valued repre-
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(
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(
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))
+
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(
[Belcw j,Plcw j]⊗

(
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))
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Then using the multiplication by scalar opera-
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sentations of S+i and S−i as follows

S+Ag1i
= ∑

j∈Kb

(
Belcw j

(
p+j − li j

)
+Plcw j

(
p+j − li j

))
+

∑
j∈Kc

(
Belcw j

(
li j − p+j

)
+Plw j

(
li j − p+j

))
,

S−Ag1i
= ∑

j∈Kb

(
Belcw j

(
li j − p−j

)
+Plcw j

(
li j − p−j

))
+

∑
j∈Kc

(
Belcw j

(
p−j − li j

)
+Plcw j

(
p−j − li j

))
.

(41)
i = 1,2, ...,m, j = 1,2, ...,n.

To simplify the analysis and make it possible to
compare the results obtained with those provided by
other aggregation modes, the special normalization
was applied

T+
Ag1i

= S+Ag1i
/max

{
max

{
S+Ag1i

}
,max

{
S−Ag1i

}}
,

T−
Ag1i

= S−Ag1i
/max

{
max

{
S+Ag1i

}
,max

{
S−Ag1i

}}
,

(42)
i = 1,2, ...,m.

The final ratings of alternatives ware calculated
as follows

RDAg1i =
T−

Ag1i

T−
Ag1i

+T+
Ag1i

, i = 1,2, ...,m. (43)

Let us consider the aggregation operator Ag2
(32) introduced by Yager [82]. This aggregation ap-
proach is based on the assumption that the greater
the minimal value of a local criterion is, the more
valuable is the analyzing alternative. Using this
method, first we obtain the aggregated separation
of each alternative from the positive ideal solutions
(S+Ag2i

, i = 1, ...,m) and from the negative ideal solu-
tions (S−Ag2i

, i = 1, ...,m).

Nevertheless, in the considered case, we cannot
use expression (32) directly as the existence of ben-
efit and cost criteria should be taken into account.
Hence we should adapt the aggregation Ag2, also
called “principle of maximal pessimism”, for the
peculiarity of considering aggregation problem.

It is seen that with the increasing the distances
p+j − li j, li j − p+j (see (39)), the value of the ag-
gregated separation of alternatives from the posi-
tive ideal solution decreases. On the other hand,
with rising the distances li j − p−j , and p−j − li j, the
value of the aggregated separation of each alterna-
tive from the negative ideal solution is increasing.

Then based on the operator (26), which can-
not be defined in the framework of Atanassov’s
A − IFS, and having in mind that we are dealing
with cost and profit criteria and omitting cumber-
some intermediate conversions (like those used to
present S+Ag1i

and S−Ag1i
) we get

S+Ag2i
= max

{
max j∈Kb

{(
p+j − li j

)Belcw j
+
(

p+j − li j

)Plcw j
}
,

max j∈Kc

{(
li j − p+j

)Belcw j
+
(

li j − p+j
)Plcw j

}}
,

S−Ag2i
= min

{
min j∈Kb

{(
li j − p−j

)Belcw j
+
(

li j − p−j
)Plcw j

}
,

min j∈Kc

{(
p−j − li j

)Belcw j
+
(

p−j − li j

)Plcw j
}}

,

(44)
i = 1,2, ...,m, j = 1,2, ...,n.

T+
Ag2i

= S+Ag2i
/max

{
max

{
S+Ag2i

}
,max

{
S−Ag2i

}}
,

T−
Ag2i

= S−Ag2i
/max

{
max

{
S+Ag2i

}
,max

{
S−Ag2i

}}
,

(45)
i = 1,2, ...,m.

RDAg2i =
T−

Ag2i

T−
Ag2i

+T+
Ag2i

, i = 1,2, ...,m. (46)

Based on the nearly same reasoning, we infer the
aggregated separation of each alternative, from the
positive ideal solutions (S+Ag3i

, i = 1, ...,m) and from
the negative ideal solutions (S−Ag3i

, i = 1, ...,m), for
the aggregating mode Ag3 (33) we get

S+Ag3i
= ∏

j∈Kb

((
p+j − li j

)Belcw j
+
(

p+j − li j

)Plcw j
)
×

∏
j∈Kc

((
li j − p+j

)Belcw j
+
(

li j − p+j
)Plcw j

)
,

S−Ag3i
= ∏

j∈Kb

((
li j − p−j

)Belcw j
+
(

li j − p−j
)Plcw j

)
×

∏
j∈Kc

((
p−j − li j

)Belcw j
+
(

p−j − li j

)Plcw j
)
,

(47)
i = 1,2, ...,m, j = 1,2, ...,n.

T+
Ag3i

= S+Ag3i
/max

{
max

{
S+Ag3i

}
,max

{
S−Ag3i

}}
,

T−
Ag3i

= S−Ag3i
/max

{
max

{
S+Ag3i

}
,max

{
S−Ag3i

}}
,

(48)
i = 1,2, ...,m.

RDAg3i =
T−

Ag3i

T−
Ag3i

+T+
Ag3i

, i = 1,2, ...,m. (49)
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No doubt, to solve complex real-world multiple cri-
teria problems, all appropriate approaches to the ag-
gregation of local criteria might be applied. It is
clear the in practice different aggregating methods
may result in competing ranks of alternatives. Be-
cause experts may have different preferences con-
cerned with considering aggregating methods, the
choice of compromise solution becomes an actual
problem. Therefore, here we will use an approach
that was developed to solve the multiple criteria
problems with the use of method for aggregation of
aggregating modes.

3.3 A method for aggregation of aggregat-
ing modes

There are not so many approaches to general-
ize aggregating operators proposed in the literature.
Such approaches usually comprise some assump-
tion of heuristic nature and are burdened by differ-
ent shortcomings and limitations considered in our
paper [28].

In the current paper, an approach to aggregation
of aggregating modes developed in [64] and [86]
will be applied. This approach is based on the syn-
thesis of type-2 and level-2 fuzzy sets with the sup-
port being the set of compared alternatives. It was
shown in [28] that this approach is generally free
of the shortcomings and limitations of other known
methods. An important merit of this approach is
that for its implementation there is no need to use
the min, sum and multiplication operations as they
produce an infinite sequence of nested into each
other aggregation problems. This approach was de-
veloped and presented in [64, 86, 87, 88, 89] in de-
tail. Therefore, in the current paper, it will be pre-
sented briefly with the adaptation to the formulation
of the considered problem. Let al j, j = 1, . . . ,m be
competing alternatives and Agi, i = 1, . . . ,n be ac-
ceptable aggregation modes. In applications, it is
usually not so difficult to find relative importance
(weights, reliability) of aggregating modes, e.g. in
the form of verbal statements. Hence we can intro-
duce the membership function µ(Agi), i = 1, . . . ,n,
representing the closeness of Agi to the best (ideal)
approach to the aggregation. Then such an “ideal”
approach Agideal can be represented using its mem-
bership function defined on the set of considered ag-
gregating modes:

Agideal =

{
µ(Agi)

Agi

}
, i = 1, . . . ,n. (50)

Then the evaluations Agi(al j) of alternatives al j,
j = 1, . . . ,m, can be obtained using Agi, i = 1, . . . ,n.
Hence the aggregating modes Agi can be formally
predefined on the set of competing alternatives al j.
So Agi can be presented in the form of the fuzzy
subset

Agi =

{
Agi(al j)

al j

}
, j = 1, . . . ,m, (51)

where Agi(al j) may be considered as an extent (de-
gree) to which an alternative al j pertains to the set
of “good” alternatives evaluated with the use of ag-
gregation Agi. Substituting (51) into (50) with the
use of level-2 fuzzy set definition introduced by
Zadeh [90] we infer

Agideal =

{
µideal(al j)

al j

}
, j = 1, . . . ,m, (52)

where

µideal(al j) = max
i

{
µ(Agi) ·Agi(al j)

}
. (53)

With the use of the above definitions, the “ideal”
alternative can be obtained as follows

alideal = argmax
j

µideal(al j). (54)

Based on the numerical example, in the next Sec-
tion we will demonstrate the ability of the devel-
oped method to produce a compromise in the above
sense final ranking of alternatives.

4 Numerical examples

To exemplify the impact of the choice among
aggregating modes Ag1, Ag2 and Ag3 on the re-
sults provided by the developed extension of the
TOPSIS method the example considered in [32]
and bit modified for our purposes will be used.
Suppose a company needs to select the most suit-
able supplier for one of more profitable branches
of its business. After previous analysis five suppli-
ers (alternatives al1, al2, al3, al4, al5) were cho-
sen for further consideration. Four local criteria
were selected: LC1 (Product quality), LC2 (Re-
lationship closeness), LC3 (Delivery performance)
and LC4 (Price). Then assume that the components
of the decision matrix and the local criteria are de-
fined by experts as IFV s. The decision matrix used
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D
[⟨

µi j,νi j
⟩]

m×n , i= 1,2, ...m, j = 1,2, ...,n, where⟨
µi j,νi j

⟩
is the IFV presenting the rate of alterna-

tive ali in relation to the criterionLCj is given in Ta-
ble 1.

The intuitionistic fuzzy valued weights of lo-
cal criteria are as follows W = (< 0.861,0.128>,<
0.750,0.200 >,< 0.680,0.267 >,< 0.567,0.371 >
).

Then according to our approach, we replace
IFV s in the decision matrix and in the definition
of local criteria weights with corresponding belief
intervals as follows

BIi j = [Beli j,Pli j] , Beli j = µi j, Pli j = 1 − νi j,
i = 1,2, ...m, j = 1,2, ...,n,
BIcw j = [Belcw j,Plcw j] , Belcw j = µcw j, Plcw j = 1−
νcw j, j = 1,2, ...,n.
So the BI-valued local criteria weights take a form:

W = ([0.861,0.872], [0.750,0.800],
[0.680,0.733], [0.567,0.629])

(55)

The obtained BI-valued decision matrix is pre-
sented in Table 2.

Then using the rule of belief interval compar-
ison (27) and expressions (34) from the decision
matrix presented in Table 2, we obtain the positive
ideal and negative ideal solutions:

BI+ = ([0.849,0.900] , [0.780,0.882] , [0.780,0.882] , [0.526,0.626]) ,
BI− = ([0.562,0.663] , [0.462,0.562] , [0.644,0.744] , [0.759,0.872]) .

(56)
Let us consider the weighted sum type of aggre-
gation Ag1. Then using (41)-(43) from (55),(56)
and Table 2 we get the final ratings of alternatives
RDAg1i presented in Table 4.

Table 3. The final ratings of alternatives obtained
using the aggregating mode Ag1

RDAg11 RDAg12 RDAg13 RDAg14 RDAg15

0.5284 0.3337 0.6965 0.3798 0.2139

From Table 3 we get the following ranking of
alternatives:
al5 < al2 < al4 < al1 < al3. Consider the aggregat-
ing mode Ag2. Then using (44)-(46) from (55),(56)
and Table 2 we obtain the final ratings of alterna-
tives RDAg2i presented in Table 4.

Table 4. The final ratings of alternatives obtained
using the aggregating mode Ag2

RDAg21 RDAg22 RDAg23 RDAg24 RDAg25

0.4832 0.1632 0.4093 0.3181 0.1644

From Table 4 we get the following ranking of
alternatives:
al2 < al5 < al4 < al3 < al1. Consider the aggregat-
ing mode Ag3. Then using (47)-(49) from (55),(56)
and Table 2 we obtain the final ratings of alterna-
tives RDAg3i presented in Table 4.

Table 5. The final ratings of alternatives obtained
using the aggregating mode Ag3

RDAg31 RDAg32 RDAg33 RDAg34 RDAg35

0.3180 0.8417 0.6419 0.6859 0.6426

From Table 4 we get the following ranking of
alternatives:
al1 < al3 < al5 < al4 < al2.

We can see that the final rankings of alternatives
obtained using different aggregation modes are con-
siderable different (according with our experience,
this is not always the case). Therefore, since de-
cision makers hesitate in choosing the best (ideal)
method for aggregation, a compromise solution is
needed.

To obtain such a solution we will use the
method for aggregation of aggregating modes pre-
sented above in the Subsection 3.3.

In the considered example, the “ideal” aggre-
gating mode may be presented as the following
fuzzy subset:

Agideal =

{
µ(Ag1)

Ag1
,
µ(Ag2)

Ag2
,

µ(Ag3)

Ag3

}
, (57)

where µ(Ag1), µ(Ag2), µ(Ag3) are the weights or
relative reliability of aggregating modes Ag1,Ag2
and Ag3 ,respectively. On the other hand, each Agi

can be formally defined on the set of competing al-
ternatives al j, j = 1,2, ...,5. Therefore, each Agi

can be represented by the fuzzy subset

Agi =
{

Agi(al1)
al1

, Agi(al2)
al2

, Agi(al3)
al3

, Agi(al4)
al4

, Agi(al5)
al5

}
,

(58)
where Agi(al j) = RDAgi j , i = 1,2,3, j = 1,2, ...,5.
The values of RDAgi j are presented in Tables 3-5.
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Table 1. IF-valued decision matrix

LC1 LC2 LC3 LC4

al1 < 0.728,0.170 > < 0.626,0.272 > < 0.780,0.118 > < 0.700.0.200 >
al2 < 0.596,0.302 > < 0.605,0.292 > < 0.644,0.256 > < 0.578,0.321 >
al3 < 0.849,0.100 > < 0.780,0.118 > < 0.769,0.170 > < 0.769,0.128 >
al4 < 0.663,0.236 > < 0.538,0.361 > < 0.746,0.151 > < 0.644,0.254 >
al5 < 0.562,0.337 > < 0.462,0.438 > < 0.668,0.231 > < 0.526,0.374 >

Table 2. Belief interval-valued decision matrix

LC1 LC2 LC3 LC4

al1 [0.728,0.830] [0.626,0.728] [0.780,0.882] [0.700.0.800]
al2 [0.596,0.698] [0.605,0.708] [0.644,0.774] [0.578,0.679]
al3 [0.849,0.900] [0.780,0.882] [0.769,0.830] [0.769,0.872]
al4 [0.663,0.764] [0.538,0.639] [0.746,0.849] [0.644,0.746]
al5 [0.562,0.663] [0.462,0.562] [0.668,0.769] [0.526,0.626]

Then according to the method presented in Subsec-
tion 3.3, we get

Agideal =
{

µideal(al1)
al1 ,

µideal(al2)
al2 ,

µideal(al3)
al3 ,

µideal(al4)
al4 ,

µideal(al5)
al5

}
,

(59)
where µideal(al j) = maxi

{
µ(Agi) ·RDAgi j

}
,i =

1,2,3, j = 1,2, ...,5. For µ(Ag1) = 0.05, µ(Ag2) =
0.65, µ(Ag3) = 0.3, we have obtained
µideal(al1)=0.314,
µideal(al2)=0.2525,
µideal(al3)=0.1291, µideal(al4)=0.2068,
µideal(al5)=0.2823 and therefore
µideal(al3)< µideal(al4)< µideal(al2)< µideal(al5)<
µideal(al1).

Therefore, we get the following ranking: al3 <
al4 < al2 < al5 < al1.

It is seen that this final ranking is substantially
different from rankings we have obtained with the
use of aggregating modes Ag1, Ag2 and Ag3 solely.
Hence, it may be treated as some consensus or com-
promise solution.

5 Conclusion

The technique for establishing order preference
by similarity to the ideal solution (TOPSIS) proba-
bly is one of the most popular methods for the solu-
tion of multiple criteria decision making (MCDM)
problems. The method was primarily developed
for dealing with real-valued data. Nevertheless, in
practice often it is hard to present precisely exact

ratings of alternatives with respect to local criteria
and as a result these ratings are often seen as in-
terval, fuzzy or intuitionistic fuzzy values (IFV s).
In this paper, we have developed a generalization
of TOPSIS method in the intuitionistic fuzzy set-
ting. In our recent works, we showed that the oper-
ation on IFV s defined in the classical Atanassov’s
intuitionistic fuzzy sets theory (A− IFS) has some
drawbacks and limitations which may produce con-
troversial results in the solution of MCDM prob-
lems or decrease the method’s ability, e.g. the
power operation, where both operands are IFV s is
not defined in the framework of A− IFS. This is
a very important limitation since it prevents intro-
ducing such an important aggregation operator as
the weighted geometric mean, where the weights of
local criteria are IFV s. Therefore, we introduced
two additional aggregation operators that cannot be
defined in the framework of conventional A− IFS
when weights of local criteria are IFV s.

Then we have used the redefinition of A− IFS
in the framework of the Dempster-Shafer theory of
evidence (DST ). This redefinition is free of draw-
backs and limitations of operations defined in the
conventional A− IFS. This claim was proved with
the use of corresponding theorems in our previous
works. In the current paper, we use this redefinition
to generalize the conventional intuitionistic fuzzy
TOPSIS method. We showed that the distances
of the alternatives from the ideal solutions might
be treated (in some sense) as modified weighted
sums of local criteria. The use of weighted sums
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al5 [0.562,0.663] [0.462,0.562] [0.668,0.769] [0.526,0.626]

Then according to the method presented in Subsec-
tion 3.3, we get

Agideal =
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al1 ,

µideal(al2)
al2 ,
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µideal(al4)
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}
,
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where µideal(al j) = maxi
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µ(Agi) ·RDAgi j

}
,i =

1,2,3, j = 1,2, ...,5. For µ(Ag1) = 0.05, µ(Ag2) =
0.65, µ(Ag3) = 0.3, we have obtained
µideal(al1)=0.314,
µideal(al2)=0.2525,
µideal(al3)=0.1291, µideal(al4)=0.2068,
µideal(al5)=0.2823 and therefore
µideal(al3)< µideal(al4)< µideal(al2)< µideal(al5)<
µideal(al1).

Therefore, we get the following ranking: al3 <
al4 < al2 < al5 < al1.

It is seen that this final ranking is substantially
different from rankings we have obtained with the
use of aggregating modes Ag1, Ag2 and Ag3 solely.
Hence, it may be treated as some consensus or com-
promise solution.

5 Conclusion

The technique for establishing order preference
by similarity to the ideal solution (TOPSIS) proba-
bly is one of the most popular methods for the solu-
tion of multiple criteria decision making (MCDM)
problems. The method was primarily developed
for dealing with real-valued data. Nevertheless, in
practice often it is hard to present precisely exact

ratings of alternatives with respect to local criteria
and as a result these ratings are often seen as in-
terval, fuzzy or intuitionistic fuzzy values (IFV s).
In this paper, we have developed a generalization
of TOPSIS method in the intuitionistic fuzzy set-
ting. In our recent works, we showed that the oper-
ation on IFV s defined in the classical Atanassov’s
intuitionistic fuzzy sets theory (A− IFS) has some
drawbacks and limitations which may produce con-
troversial results in the solution of MCDM prob-
lems or decrease the method’s ability, e.g. the
power operation, where both operands are IFV s is
not defined in the framework of A− IFS. This is
a very important limitation since it prevents intro-
ducing such an important aggregation operator as
the weighted geometric mean, where the weights of
local criteria are IFV s. Therefore, we introduced
two additional aggregation operators that cannot be
defined in the framework of conventional A− IFS
when weights of local criteria are IFV s.

Then we have used the redefinition of A− IFS
in the framework of the Dempster-Shafer theory of
evidence (DST ). This redefinition is free of draw-
backs and limitations of operations defined in the
conventional A− IFS. This claim was proved with
the use of corresponding theorems in our previous
works. In the current paper, we use this redefinition
to generalize the conventional intuitionistic fuzzy
TOPSIS method. We showed that the distances
of the alternatives from the ideal solutions might
be treated (in some sense) as modified weighted
sums of local criteria. The use of weighted sums

AN APPROACH TO GENERALIZATION OF THE . . .

is not the best approach to the aggregation of local
criteria in many real-world applications, since the
small values of some local criteria can be compen-
sated by large values of other ones which in prac-
tice may be less important for the decision maker.
It is worth noting that in some fields the weighted
sums aggregation is not used at all. Obviously, if
we deal with a complex real-world MCDM prob-
lem, all relevant aggregation modes should be used
in the analysis. On the other hand, different aggre-
gating modes generally provide different rankings
of alternatives. Therefore, to obtain the compro-
mise ranking, an appropriate method for aggrega-
tion of aggregation modes should be used.

Therefore here we use the method for aggrega-
tion of aggregation modes proposed in developed in
our papers, which is based on the synthesis of type-
2 and level-2 fuzzy sets defined on the support com-
posed of compared alternatives. This method, in a
great extent, is free of the drawbacks and limita-
tions of other methods for aggregation of aggregat-
ing modes presented in the literature. It is important
that the developed redefinition of the conventional
intuitionistic fuzzy TOPSIS method in the frame-
work of DST , besides many obvious advantages,
seems to be more simple and easy to use than the
traditional approach. The illustrative examples are
presented to show the features of the proposed ap-
proach.
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