PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Controls on basal Zechstein (Wuchiapingian) evaporite deposition in SW Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The development of basal Zechstein (Wuchiapingian) strata inSW Polandindicates the existence of a diversified relief inherited after the flooding of the pre-existing depression by the transgressing Zechstein sea. The deeper parts of the basin were the place of development of thin basinal Zechstein Limestone showing sedimentary condensation manifested by bored and encrusted grains and thick evaporites (mostly halite), and in shallow parts Zechstein Limestone reefs followed by thinner evaporite sequences (dominated by anhydrite) occur. The analysis of 3D seismic sections showed that instead of three conventionally recognized evaporite units of stratigraphic potential in the PZ1 cycle, five units occur (from the base to the top: Lower Anhydrite, Lower Oldest Halite, Middle Anhydrite, Upper Oldest Halite, Upper Anhydrite). In a particular place their number may vary from two (Lower Anhydrite at the base of the PZ1 cycle and Upper Anhydrite at the top of the PZ1 cycle) to five. There are two complexes of Lower Anhydrite occurring throughout the platform and basinal zones showing deepening-upward (transgressive) trend. The halite sedimentation in the deepest parts of salt basins began shortly after the deposition of the upper Lower Anhydrite complex while in the sulphate platform areas the sulphate deposition lasted still for a long time. The Lower Oldest Halite deposits occur in the depressions. Between the halite basins, anhydrite platforms occur, and the thickness of anhydrite platform deposits is smaller than it is observed in salt basins. The Upper Oldest Halite in turn is recorded above the anhydrite platform. The two halite units represent different phases of development of halite basins. The Lower Oldest Halite basins are related to the pre-Zechstein depressions, although in some cases their syndepositional subsidence was controlled by reactivation, during the deposition of basal Zechstein strata, of former faults. In turn, the Upper Oldest Halite basins used the accommodation space created due to anhydritization of the Lower Anhydrite deposits composed originally of selenitic gypsum. The 3D seismics evidences that the PZ1 evaporites inSW Polandhave been deposited in far more complex and dynamic system than it was assumed before.
Rocznik
Strony
485--502
Opis fizyczny
Bibliogr. 71 poz., rys., wykr.
Twórcy
  • Polish Oil and Gas Company, Bohaterów Westerplatte 15, 65-034 Zielona Góra, Poland
autor
  • Polish Geological Institute – National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
Bibliografia
  • 1. Antonowicz, L., Knieszner, L., 1984. Zechstein reefs of the Main Dolomite in Poland and their seismic recognition. Acta Geologica Polonica, 34: 81-94.
  • 2. Becker, F., Bechstädt, T., 2000. Presaline sedimentation controlling the initial development of a giant salt deposit (Zechstein Cycle-1, Germany). Proceedings of the 8th World Salt Symposium 2000, The Hague, The Netheri ands: 77-82.
  • 3. Becker, F., Bechstädt, T., 2006. Sequence stratigraphy of a carbonate-evaporite succession (Zechstein 1, Hessian Basin, Germany). Sedimentology, 53: 1083-1120.
  • 4. Czapowski, G., 1987. Sedimentary facies in the Oldest Rock Salt (Na1) of the Łeba elevation (northern Poland). Lecture Notes in Earth Sciences, 10: 207-224.
  • 5. Denison, R.E., Peryt, T.M., 2009. Strontium isotopes in the Zechstein an hydrites of Poland: evidence of varied meteoric contributions to marine brines. Geological Quarterly, 53 (2): 159-166.
  • 6. Dyjaczynski, K., Górski, M., Mamczur, S., Peryt, T.M., 2001.
  • 7. Reefs in the basinal facies of the Zechstein Limestone (Upper Permian) of Western Poland. Journal of Petroleum Geology, 24: 265-285.
  • 8. Flügel, E., 1982. Microfacies Analysis of Limestones. Springer, Berlin.
  • 9. Flügel, E., 2010. Microfacies of Carbonate Rocks. Analysis, Interpretation and Application. Springer, Heidelberg.
  • 10. Fulda, E., 1929. Über “Anhydrit-Klippen”. Kali, 23: 129-133.
  • 11. Gast, R.E., 1988. Rifting im Rotliegenden Niedersachsens. Geowissenschaften, 4: 115-122.
  • 12. Geluk, M., 1999. Late Permian (Zechstein) rifting in the Netherlands: models and implications for petroleum geology. Petroleum Geoscience, 5: 189-199.
  • 13. Górski, M., Gierszewska, D., Król, E., Urbañska, H., Wilk, W., 2000. Lithofacies interpretation of 3D seismic data: key to success in the Zechstein Limestone reef detection in the Permian Basin (on example of the Kościan Reef - western Poland) (in Polish with English summary). Przegląd Geologiczny, 48: 137-150.
  • 14. Hammes, U., Krause, M., Mutti, M., 2013. Unconventional reservoir potential of the upper Permian Zechstein Group: a slope to basin sequence stratigraphic and sedimentological evaluation of carbonates and organic-rich mudrocks, Northern Germany. Environmental Earth Sciences, 70: 3797-3816.
  • 15. Hemmann, M., 1972. Ausbuildung und Genese des Leinesteinsalzes und des Hauptanhydrits (Zechstein 3) im Ostteil des Subherzynen Beckens. Berichte der Deutsche Gesellschaft für Geologische Wissenchaften, B16: 307-411.
  • 16. Hollingworth, S.E., 1948. Evaporites. Proceedings of Yorkshire Geological Society, 27: 192-298.
  • 17. Hryniv, S.P., Peryt, T.M., 2003. Sulfate cavity filling in the Lower Werra Anhydrite (Zechstein, Poland), Zdrada area, northern Poland: evidence for early diagenetic evaporite paleokarst formed undersedimentary cover. Journal of Sedimentary Research, 73: 451-461.
  • 18. Hryniv, S., Peryt, T.M., 2010. Strontium distribution and celestite occurrence in Zechstein (Upper Permian) anhydites of West Poland. Chemie der Erde, 70: 137-147.
  • 19. Kendall, A.C., 1992. Evaporites. In: Facies Models - Response to Sea Level Change (eds. R.G. Walker and N.P. James): 375-409. Geological Association of Canada, St. Johns.
  • 20. Kendall, A.C., 2010. Marine evaporites. GeoText, 6: 503-537.
  • 21. Kiersnowski, H., Peryt, T.M., Buniak, A., Mikołajewski, Z., 2010. From the intra-desert ridges to the maine carbonate is i and chain: middle to late Permian (Upper Rotliegend-Lower Zechstein) of the Wolsztyn-Pogorzela high, west Poland. Geological Journal, 44: 319-335.
  • 22. Kindle, C., Roark, L., Jordan, T.E., 1987. A stratigraphic test of gypsum dehydration and implications for basin development. Fifth International Williston Basin Symposium.
  • 23. Kłapciński, J., 1966. Stratigraphy of the Werra-Anhydrites in the region of Lubin and Sieroszowice (in Polish with English summary). Rocznik Polskiego Towarzystwa Geologicznego, 36: 65-78.
  • 24. Kotarba, M.J., Peryt, T.M., Kosakowski, P., Więcław, D., 2006. Organic geochemistry, depositional history and hydrocarbon generation modelling of the Upper Permian Kupferschiefer and Zechstein Limestone strata in south-west Poland. Marine and Petroleum Geology, 23: 371-386.
  • 25. Langbein, R., 1987. The Zechstein sulphates: the state of the art. Lecture Notes in Earth Sciences, l0: 143-188.
  • 26. Lorenc, S., 1975. Petrography and facies differentiation in the Werra limestones and anhydrite rocks, Fore-Sudetic Monocline, SW Poland (in Polish with English summary). Geologia Sudetica, 10: 59-104.
  • 27. Markiewicz, A., Becker, R., 2009. The original extent of the Oldest Halite (Na1) in the southern part of the Fore-Sudetic Monocline (SW Po land). Geologia, 35: 327-348.
  • 28. Ortí, F., 2010. Selenite facies in marine evaporites: a review. IAS Special Publication, 43: 431-464.
  • 29. Ortí Cabo, F., Pueyo, Mur, J.J., Geisler-Cussey, D., Dulau, N., 1984. Evaporitic sedimentaion in the coastal salinas of Santa Pola (Alicante, Spain). Revista d'Investigacions Geologiques, 38/39: 169-220.
  • 30. Oszczepalski, S., Rydzewski, A., 1987. Paleogeography and sedimentary model of the Kupferschiefer in Poland. Lecture Notes in Earth Sciences, 10: 189-205.
  • 31. Paul, J., 1986. Stratigraphy of the Lower Werra Cycle (Z1) in West Germany (preliminary results). Geological Society Special Publications, 22: 149-156.
  • 32. Paul, J., 1987. Der Zechstein am Harzrand: Querprofil über eine permische Schwelle. In: Zechstein 87 (eds. J. Kulick and J. Paul). Internationales Symposium. Exkursionsführer, 2: 193-276, Wiesbaden.
  • 33. Paul, J., 2011. Zum Alter der Korbacher Spalte und dem Klima des Zechsteins (Hessen, Werra-Formation). Geologisches Jahrbuch Hessen, 137: 103-110.
  • 34. Peryt, D., Peryt, T.M., Raczyński, P., Chłódek, K., 2012. Foraminiferal coloni zation re lated to the Zechstein (Lopingian) transgression in the western part of the Wolsztyn Palaeo-Ridge area, Western Poland. Geological Quarterly, 56 (3): 529-546.
  • 35. Peryt, T.M., 1984. Sedimentation and early diagenesis of the Zechstein Limestone in Western Poland (in Polish with English summary). Prace Instytutu Geologicznego, 109: 1-70.
  • 36. Peryt, T.M., 1986. Chronostratigraphical and lithostratigraphical correlations of the Zechstein Limestone of Central Europe. Geological Society Special Publications, 22: 201-207.
  • 37. Peryt, T.M., 1994. The anatomy of a sulphate platform and adjacent basin system in the Łeba sub-basin of the Lower Werra Anhydrite (Zechstein, Upper Permian), northern Poland. Sedimentology, 41: 83-113.
  • 38. Peryt, T.M., 2010. Zechstein 1-3 evaporites of the Gorzów Block (NW Poland) (in Polish with English summary). Przegląd Geologiczny, 58: 689-694.
  • 39. Peryt, T.M., Kovalevich, V.M., 1996. Orl gin of anhydrite pseudomorphs after gypsum crystals in the Oldest Halite (Werra, Upper Permian, northern Poland). Zentralblatt für Geologie und Paläontologie, I: 337-356.
  • 40. Peryt, T.M., Peryt, D., 2012. Foraminiferal and geochemical records of environmental changes during Zechstein Limestone (Lopingian) deposition in Northern Poland. Geological Quarterly, 56 (1): 187-198.
  • 41. Peryt, T.M., Ważny, H., 1980. Microfacies and geochemical development of the basin facies of the Zechstein Limestone (Ca1) in western Poland. Contributions to Sedimentology, 9: 279-306.
  • 42. Peryt, T.M., Orti F., Rosell, L., 1993. Sulfate platform-basin transition of the Lower Werra Anhydrite (Zechstein, Upper Permian), SW Poland: facies and petrography. Journal of Sedimentary Petrology, 63: 646-658.
  • 43. Peryt, T.M., Kasprzyk, A., Antonowicz, L., 1996. Upper Werra Anhydrite (Zechstein, Upper Permian) in Poland. Bulletin of the Polish Academy of Sciences, Earth Sciences, 44: 121-130.
  • 44. Peryt, T.M., Pierre, C., Gryniv, S.P., 1998. Origin of polyhalite deposits in the Zechstein (Upper Permian) Zdrada Platform (northern PoIand). Sedimentology, 45: 565-578.
  • 45. Peryt, T.M., Geluk, M.C., Mathiesen, A., Paul, J., Smith, K., 2010a. Zechstein. In: Petroleum Geological Atlas of the Southern Permian Basin Area (eds. J.C. Doornenbal and A.G. Stevenson): 123-147. EAgE Publications, b.v. (Houten).
  • 46. Peryt, T.M., Hałas, S., Hryniv, S.P., 2010b. Sulphur and oxygen isotope signatures of Late Permian Zechstein anhydrites, West Poland: seawaterevolution and diagenetic constraints. Geological Quarterly, 54 (4): 387-400.
  • 47. Peryt, T.M., Durakiewicz, T., Kotarba, M.J., Oszczepalski, S., Peryt D., 2012a. Carbon isotope stratigraphy of the basal Zechstein (Lopingian) strata in Northern Poland. Geological Quarterly, 56 (2): 285-298.
  • 48. Peryt, T.M., Raczyński, P., Peryt, D., Chłódek, K., 2012b. Upper Permian reef complex in the basinal facies of the Zechstein Limestone (Ca1), western Poland. Geological Journal, 46: 537-552.
  • 49. Peryt, T.M., Hałas, S., Peryt, D., 2014. Carbon and oxygen isotopic composition and foraminifera ofcondensed basal Zechstein (Upper Permian) strata in western Poland: environmental and stratigraphic implications. Geological Journal, DOI: 10.1002/gj.2549
  • 50. Pharaoh, T.C., Dusar, M., Geluk, M., Kockel, F., Krawczyk, C., Krzywiec, P., Scheck-Wenderoth, M., Thybo, H., Vejbaek, O., Wees, J.-D. van, 2010. Tectonic evolution. In: Petroleum Geological Atlas of the Southern Permian Basin (eds. J.C. Doornenbal and A.G. Stevenson): 25-58. EAGE (Houten).
  • 51. Podemski, M., 1973. The Zechstein sedimentation in the western part of the Fore-Sudetic Monocline in the vicinity of Nowa Sól (in Polish with English summary). Prace Instytutu Geologicznego, 71: 1-101.
  • 52. Pope, M.C., Grotzinger, J.P., Schreiber, B.C., 2000. Evaporitic subtidal stromatolites produced by in situ precipitation: Textures, facies associations, and temporal significance. Journal of Sedimentary Research, 70: 1139-1151.
  • 53. Richter-Bernburg, G., 1955. Über salinare Sedimentation. Zeitschrift der deutschen geologischen Gesellschaft, 105: 593-645.
  • 54. Rich ter-Bernburg, G., 1985. Zechstein-Anhydrite. Fazies und Genese. Geologisches Jahrbuch, A85: 1-82.
  • 55. Rockel, W., Ziegenhardt, W., 1979. Strukturelle Kriterien der Lagunenbildung im tieferen Zechstein im Raum südlich Berlin. Zeitschrift für Geologische Wissenschaften, 7: 847-860.
  • 56. Smith, D.B., 1979. Rapid marine transgressions and regressions of the Upper Perm I an Zechstein Sea. Journal of Geological Society, 136: 155-156.
  • 57. Smith, D.B., 1986. The Trow Point Bed - a deposit of Upper Permian marine oncoids, peloids and columnar stromatolites in the Zechstein of NE Eng land. Geological Society Special Publications, 22: 113-125.
  • 58. Smith, D.B., 1995. Marine Permian in England. Chapman and Hall: London.
  • 59. Sonnenfeld, P., 1984. Brines and Evaporites. Academic Press, Orlando.
  • 60. Strohmenger, C., Voigt, E., Zimdars, J., 1996. Sequence stratigraphy and cyclic development of basal Zechstein carbonate- evaporite deposits with emphasis on Zechstein 2 off-platform carbonates (upper Permian, northeast Germany). Sedimentary Geology, 102: 33-54.
  • 61. Szurlies, M., 2013. Late Permian (Zechstein) magnetostratigraphy in Western and Central Europe. Geological Society Special Publications, 376: 73-85.
  • 62. Toboła, T., 2014. Influence of tectonics on petrological characteristics of the anhydrite and anhydrite-halite intercalations in the Oldest Halite (Na1) (Zechstein, Upper Permian) of the Bądzów area (SW Poland). Geological Quarterly, 58 (3): 521-532.
  • 63. Tomaszewski, J.B., 1962. Zechstein salt deposits of Fore-Sudetic Monocline in the Lubin-Sieroszowice region (in Polish with English summary). Przegląd Geologiczny, 10: 668-671.
  • 64. Underhill, J.R., Hunter, K.L., 2008. Effect of Zechstein Supergroup (Z1 cycle) Werrahalit pods on prospectivity in the southern North Sea. AAPG Bulletin, 92: 827-851.
  • 65. Wagner, R., 1994. Stratigraphy and evolution of the Zechstein basin in the Polish Lowland (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 146: 1-71.
  • 66. Wagner, R., Peryt, T.M., 1997. Possibility of sequence stratigraphic subdivision of the Zechstein in the Polish Basin. Geoiogical Quarterly, 41 (4): 457-474.
  • 67. Wagner, R., Piątkowski, T.S., Peryt, T.M., 1978. Polish Zechstein Basin (in Polish with English summary). Przegląd Geologiczny, 26: 673-686.
  • 68. Warren, J.K., 1982. The hydrological setting, occurrence and significance of gypsum in late Quaternary salt lakes in South Australia. Sedimentology, 29: 609-637.
  • 69. Warren, J., 1999. Evaporites. Their Evolution and Economics. Blackwell Science, Oxford.
  • 70. Williams-Stroud, S.C., Paul, J., 1997. Initiation and growth of gypsum piercement structures in the Zechstein Basin. Journal of Structural Geology, 19: 897-907.
  • 71. Ziegler, P.A., 1990. Geological Atlas of Western and Central Europe. Shell International Petroleum Maatschappij B.V. The Hague.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5030c706-5ad2-44f5-9004-0e1a364a442a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.