PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Toxic Gases Detection and Tolerance Level Classification Using Machine Learning Algorithms

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With rapid population increases, people are facing the challenge to maintain healthy conditions. One of the challenges is air pollution. Due to industrial development and vehicle usage air pollution is becoming a high threat to human life. This air pollution forms through various toxic contaminants. This toxic contamination levels increase and cause severe damage to the living things in the environment. To identify the toxic level present in the polluted air various methods were proposed by the authors, But failed to detect the tolerance level of toxic gases. This article discusses the methods to detect toxic gasses and classify the tolerance level of gasses present in polluted air. Various sensors and different algorithms are used for classifying the tolerance level. For this purpose “Artificial Sensing Methodology” (ASM), commonly known as e-nose, is a technique for detecting harmful gases. SO2-D4, NO2-D4, MQ-135, MQ136, MQ-7, and other sensors are used in artificial sensing methods (e-nose). “Carbon monoxide, Sulfur dioxide, nitrogen dioxide, and carbon dioxide” are all detected by these sensors. The data collected by sensors is sent to the data register from there it is sent to the Machine learning Training module (ML) and the comparison is done with real-time data and trained data. If the values increase beyond the tolerance level the system will give the alarm and release the oxygen.
Rocznik
Strony
499--506
Opis fizyczny
Bibliogr. 25 poz., fot., tab., wykr.
Bibliografia
  • [1] Pan, X., Zhang, H., Ye, W., Bermak, A. and Zhao, X., 2019. A fast and robust gas recognition algorithm based on hybrid convolutional and recurrent neural network. IEEE Access, 7, pp.100954-100963. https://doi.org/10.1109/ACCESS.2019.2930804
  • [2] Abdelkhalek, M., Alfayad, S., Benouezdou, F., Fayek, M.B. and Chassagne, L., 2019. Compact and embedded electronic nose for volatile and non-volatile odor classification for robot applications. IEEE Access, 7, pp.98267-98276. https://doi.org/10.1109/ACCESS.2019.2928875
  • [3] Ouhmad, S., El Makkaoui, K., Beni-Hssane, A., Hajami, A. and Ezzati, A., 2019. An electronic nose natural neural learning model in real work environment. IEEE Access, 7, pp.134871-134880. https://doi.org/10.1109/ACCESS.2019.2941473
  • [4] Shetty, C., Sowmya, B.J., Seema, S. and Srinivasa, K.G., 2020. Air pollution control model using machine learning and IoT techniques. In Advances in Computers (Vol. 117, No. 1, pp. 187-218). Elsevier. https://doi.org/10.1016/bs.adcom.2019.10.006
  • [5] Liu, Y., Zhang, L., Wang, H., Zhang, X., Chen, C., Wang, H., Kong, D., Chavarria, M.A. and Brugger, J., 2013, August. Identification of toxic VOC pollutants using FAIMS. In 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing (pp. 1698-1701). IEEE.
  • [6] Ravindra, V. and Rajbhoj, S.M., 2017, August. Identification of toxic gases using an electronic nose. In 2017 International Conference on Computing, Communication, Control and Automation (ICCUBEA) (pp. 1-5). IEEE.
  • [7] Manna, S., Bhunia, S.S. and Mukherjee, N., 2014, May. Vehicular pollution monitoring using IoT. In International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014) (pp. 1-5). IEEE.
  • [8] Hassan, M. and Bermak, A., 2015. Robust Bayesian inference for gas identification in electronic nose applications by using random matrix theory. IEEE Sensors Journal, 16(7), pp.2036-2045. https://doi.org/10.1109/JSEN.2015.2507580
  • [9] Dubey, S., Singh, P., Yadav, P. and Singh, K.K., 2020. Household waste management system using IoT and machine learning. Procedia Computer Science, 167, pp.1950-1959.
  • [10] Khan, M.A.H., Thomson, B., Debnath, R., Motayed, A. and Rao, M.V., 2020. Nanowire-based sensor array for detection of cross-sensitive gases using PCA and machine learning algorithms. IEEE Sensors Journal, 20(11), pp.6020-6028. https://doi.org/10.1109/JSEN.2020.2972542
  • [11] Sindhu, S. and Saravanan, M., 2021, June. Architectural framework for Multi sensor Data fusion and validation in IoT Based system. In 2021 10th IEEE International Conference on Communication Systems and Network Technologies (CSNT) (pp. 448-452). IEEE.
  • [12] Guevremont, R., 2004. High-field asymmetric waveform ion mobility spectrometry: a new tool for mass spectrometry. Journal of Chromatography A, 1058(1-2), pp.3-19.
  • [13] D. Rivero and D. Periscal, “Evolving graphs for ann development and simplification,” in Encyclopedia of Artificial Intelligence, J. R. Rabuñal, J. Dorado, and A. Pazos, Eds., pp. 618-624, IGI Global, 2009.
  • [14] H. M. Abdul-Kader, “Neural networks training based on differential evolution algorithm compared with other architectures for weather forecasting,” International Journal of Computer Science and Network Security, vol. 9, no. 3, pp. 92-99, 2009. View at Google Scholar.
  • [15] Peris, M. and Escuder-Gilabert, L., 2009. A 21st century technique for food control: Electronic noses. Analytica chimica acta, 638(1), pp.1-15.
  • [16] Guttikunda S: Air Quality Index (AQI): Methodology & Applications for Public Awareness in Cities, 2010: http://www.urbanemissions.info/wp-content/uploads/docs/SIM-34-2010.pdf
  • [17] Chen, Y., Li, L.N., Yang, C.Q., Hao, Z.P., Sun, H.K. and Li, Y., 2011. Countermeasures for priority control of toxic VOC pollution. Huan Jing ke Xue= Huanjing Kexue, 32(12), pp.3469-3475.
  • [18] Miguel Macías Macías, J. Enrique Agudo, Antonio García Manso, Carlos Javier García Orellana, Horacio Manuel González Velasco, and Ramón Gallardo Caballero, "A Compact and Low-Cost Electronic Nose for Aroma Detection," Sensors 2013, 13, 5528-5541.
  • [19] Kumar S, Katoria D: Air pollution and its control measures, Int J Environ EngManag4(5):445-450,2013. https://pdfs.semanticscholar.org/ed3f/1297ea9b3576c592587a6960ce198daa9d0a.pdf
  • [20] A. Sanaeifar, S. S. Mohtasebi, M. Ghasemi-Varnamkhasti, and M. Siadat, "Application of an electronic nose system coupled with the artificial neural network for classification of banana samples during the shelf-life process," 2014 International Conference on Control, Decision and Information Technologies (CoDIT), Metz, 2014, pp. 753-757.
  • [21] Boeker,P.,2014.On‘electronic nose’ methodology. Sensors and Actuators B: Chemical, 204, pp.2-17.
  • [22] Gutiérrez, J. and Horrillo, M.C., 2014. Advances in artificial olfaction: Sensors and applications. Talanta, 124, pp.95-105.
  • [23] Myllyvirta L, Dahiya S: A Status Assessment of National Air Quality Index (NAQI) and Pollution Level Assessment for Indian Cities, 2015: 2015, Greenpeace India greenpeace.org/india https://www.greenpeace.org/india/Global/india/2015/docs/India-NAQIPRESS.pdf
  • [24] Javier Burgués, Juan Manuel Jiménez-Soto, Santiago Marco “ Estimation of the limit of detection in semiconductor gas sensors through linearized calibration models ” Analytica Chimica Acta, Volume 1013, 12 July 2018, Pages 13-25
  • [25] Rose Sweetlin T, Priyadharshini D, Preethi S, Sulaiman S: Control of vehicle pollution through the Internet of things (IOT), Int J Adv Res Ideas Innov Technol 3(2) Available online at, www.ijariit.com
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-502cafde-b1c6-4faa-962f-96ed8e0f0178
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.