PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of Aggregate Production Planning Problems with and without Productivity Loss using Python Pulp Package

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Traditionally the aggregate production plan helps in determining the inventory, production, and work-force, based on the demand forecasts without considering the productivity loss at a tactical level in supply chain planning. In this paper, we include the productivity loss into traditional aggregate production plan and the prescriptive analytics technique, linear programming, is used to solve this problem of practical interest in the domain of multifarious businesses and industries. In this study, we discussed two model variations of the aggregate production planning problem with and without productivity loss, i) fixed work-force, and ii) variable Work Force. The mathematical models were designated to be solved by using an open-source python pulp package in order to evaluate the impacts of the productivity loss on both the models. PuLP is an open-source modeling framework provided by the COIN-OR Foundation (Computational Infrastructure for Operations Research) for linear and integer Programing problems written in Python. The computational results indicate that the productivity loss has direct impact on the workforce hiring and firing.
Twórcy
  • Institute of Quality & Technology Management, University of the Punjab, Lahore, Pakistan
autor
  • Institute of Quality & Technology Management, University of the Punjab, Lahore, Pakistan
autor
  • Institute of Quality & Technology Management, University of the Punjab, Lahore, Pakistan
  • National Tex tile University, Faisalabad, Pakistan
  • Faisalabad Business School, National Textile University, Faisalabad, Pakistan
Bibliografia
  • Biazzi J.L. (2018), Aggregate planning for probabilistic demand with internal and external storage, Journal of Operations and Supply Chain, vol. 11, no. 1, pp. 37–52.
  • Chaturvedi N.D. and Bandyopadhyay S. (2015), Targeting Aggregate Production Planning for an Energy Supply Chain, Industrial & Engineering Chemistry Research, vol. 54, no. 27, pp. 6941–6949. DOI: 10.1021/acs.iecr.5b00587.
  • Cheraghalikhani A., Khoshalhan F. and Mokhtari H. (2019), Aggregate production planning: A literature review and future research directions, International Journal of Industrial Engineering Computations, vol. 10, no. 2, pp. 309–330.
  • Demirel E., Özelkan E.C. and Lim C. (2018), Aggregate planning with Flexibility Requirements Profile, International Journal of Production Economics, vol. 202, no. May, pp. 45–58. DOI: 10.1016/j.ijpe.2018.05.001.
  • Filho O.S.S., Cezarino W. and Ratto J. (2010), Aggregate production planning: Modeling and solution via Excel spreadsheet and solver, IFAC Proceedings Volumes, vol. 43, no. 17.
  • Gholamian N., Mahdavi I., Tavakkoli-Moghaddam R. and Mahdavi-Amiri N. (2015), Comprehensive fuzzy multi-objective multi-product multi-site aggregate production planning decisions in a supply chain under uncertainty, Applied Soft Computing, vol. 37, pp. 585–607. DOI: 10.1016/j.asoc.2015.08.041.
  • Gilgeous V., Modelling realism in aggregate planning: A goal-search approach, International Journal of Production Research, vol. 27, no. 7, pp. 1179–1193, 1989. DOI: 10.1080/00207548908942616.
  • Jamalnia A. and Soukhakian M.A. (2009), A hybrid fuzzy goal programming approach with different goal priorities to aggregate production planning, Computers & Industrial Engineering, vol. 56, no. 4, pp. 1474–1486. DOI: 10.1016/j.cie.2008.09.010.
  • Jayakumar A. (2017), Optimization of Fixed Charge Problem in Python using PuLP Package, International Journal of Control Theory and Applications, vol. 10, no. 02, pp. 443–447.
  • Jayakumar A., Krishnaraj C. and Nachimuthu A.K. (2017), Aggregate production planning: Mixed strategy, Pakistan Journal Biotechnology, vol. 14, no. 3, pp. 487–490.
  • Khoshnevis B., Wolfe P.M. and Terrell M.P. (1982), Aggregate planning models incorporating productivity – an overview, International Journal of Production Research, vol. 20, no. 5, pp. 555–564.
  • Piper C.J. and Vachon S. (2001), Accounting for productivity losses in aggregate planning, International Journal of Production Research, vol. 39, no. 17, pp. 4001–4012.
  • Shi Y. and Peng Y. (2001), Multiple Criteria and Multiple Constraint Levels Linear Programming: Concepts, Techniques and Applications. World Scientific.
  • Souza G.C. (2014), Supply chain analytics, Business Horizons, vol. 57, no. 5, pp. 595–605. DOI: 10.1016/j.bushor.2014.06.004.
  • Stockton D.J. and Quinn L. (1995), Aggregate production planning using genetic algorithms, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 209, no. 3, pp. 201–209. DOI: 10.1243/PIME_PROC_1995_209_074_02.
  • VoB S. and Woodruff D.L. (2006), Introduction to Computational Optimization Models for Production Planning in a Supply Chain, 2nd ed. Springer-Verlag Berlin Heidelberg.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-502b024d-65d7-4c27-9f5b-87a155a7fbc9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.