Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Based on vector diffraction theory and inverse Faraday effect, the light induced magnetization distribution of a tightly focused azimuthally polarized Bessel–Gauss beam superimposed with a helical phase and modulated by an optimized multi belt complex phase filter (MBCPF) is analyzed numerically. It is noted that by adjusting the radii of different rings of the complex phase filter, one can achieve many novel magnetization focal distributions, such as sub-wavelength scale (0.29λ) and super-long (71λ) pure longitudinal magnetic probe and magnetization chain composed of nine, six and four magnetic spots of sub-wavelength scale. The authors expect that these results pave the path for fabricating magnetic lattices for spin wave operation, multiple atoms or magnetic particle trapping and transportation, confocal and magnetic resonance microscopy, as well as multilayer ultrahigh density magnetic storage.
Czasopismo
Rocznik
Tom
Strony
613--625
Opis fizyczny
Bibliogr. 59 poz., rys., tab.
Twórcy
autor
- Department of Physics, Chikkanna Government Arts College, Tiruppur, Tamilnadu, India
autor
- Department of Physics, Mahendra Arts and Science College (Autonomous), Namakkal, Tamilnadu, India
autor
- Department of Physics, Chikkanna Government Arts College, Tiruppur, Tamilnadu, India
autor
- Institute of Applied Optics, Department of Physical Optics, Warsaw, Poland
- National Institute of Telecommunications, Warsaw, Poland
autor
- Faculty of Engineering and Business Administration, Western Norway University of Applied Sciences, Bergen, Norway
Bibliografia
- [1] REBEI A., HOHLFELD J., The magneto-optical Barnett effect: circularly polarized light induced femto-second magnetization reversal, Physics Letters A 372(11), 2008, pp. 1915–1918, DOI:10.1016/j.physleta.2007.10.048.
- [2] STUPAKIEWICZ A., SZERENOS K., AFANASIEV D., KIRILYUK A., KIMEL A.V., Ultrafast nonthermal photo-magnetic recording in a transparent medium, Nature 542, 2017, pp. 71–74, DOI:10.1038/nature20807.
- [3] ZHANG L., TAKAHASHI Y.K., HONO K., STIPE B.C., JUANG J.-Y., GROBIS M., L10-ordered FePtAg–C granular thin film for thermally assisted magnetic recording media (invited), Journal of Applied Physics 109(7), 2011, article ID 07B703, DOI:10.1063/1.3536794.
- [4] SAVOINI M., MEDAPALLI R., KOENE B., KHORSAND A.R., LE GUYADER L., DUÒ L., FINAZZI M., TSUKAMOTO A., ITOH A., NOLTING F., KIRILYUK A., KIMEL A.V., RASING TH., Highly efficient all-optical switching of magnetization in GdFeCo microstructures by interference-enhanced absorptionof light, Physical Review B 86(14), 2012, article ID 140404(R), DOI:10.1103/PhysRevB.86.140404.
- [5] VARAPRASAD B.S.D.CH.S., CHEN M., TAKAHASHI Y.K., HONO K., L10-ordered FePt-based perpen-dicular magnetic recording media for heat-assisted magnetic recording, IEEE Transactions on Magnetics 49(2), 2013, pp. 718–722, DOI:10.1109/TMAG.2012.2218227.
- [6] HASSDENTEUFEL A., HEBLER B., SCHUBERT C., LIEBIG A., TEICH M., HELM M., AESCHLIMANN M.A.M., BRATSCHITSCH R., Thermally assisted all-optical helicity dependent magnetic switching in amor-phous Fe100–xTbx alloy films, Advanced Materials 25(22), 2013, pp. 3122–3128, DOI:10.1002/adma.201300176.
- [7] LI ZHANG, TAKAHASHI Y.K, PERUMAL A., HONO K., L10-ordered high coercivity (FePt)Ag–C granular thin films for perpendicular recording, Journal of Magnetism and Magnetic Materials 322(18), 2010,pp. 2658–2664, DOI:10.1016/j.jmmm.2010.04.003.
- [8] KIMEL A.V., KIRILYUK A., TSVETKOV A., PISAREV R.V., RASING TH., Laser induced ultrafast spin reorientation in the antiferromagnetic TmFeO3, Nature 429, 2004, pp. 850–853, DOI:10.1038/nature02659.
- [9] STANCIU C.D., KIMEL A.V., HANSTEEN F., TSUKAMOTO A., ITOH A., KIRILYUK A., RASING TH., Ultrafast spin dynamics across compensation points in ferrimagnetic GdFeCo: the role of angular momentum compensation, Physical Review B 73(22), 2006, article ID 220402(R), DOI:10.1103/PhysRevB.73.220402.
- [10] TIAN-MIN LIU, TIANHAN WANG, REID A.H., SAVOINI M., XIAOFEI WU, KOENE B., GRANITZKA P., GRAVES C.E., HIGLEY D.J., ZHAO CHEN, RAZINSKAS G., HANTSCHMANN M., SCHERZ A., STÖHR J., TSUKAMOTO A., HECHT B., KIMEL A.V., KIRILYUK A., RASING T., DÜRR H.A., Nanoscale confinement of all-optical magnetic switching in TbFeCo – competition with nanoscale heterogeneity, Nano Letters 15(10), 2015, pp. 6862–6868, DOI:10.1021/acs.nanolett.5b02743.
- [11] ELLIS M.O.A., FULLERTON E.E., CHANTRELL R.W., All-optical switching in granular Ferro magnets caused by magnetic circular dichroism, Scientific Reports 6, 2016, p. 30522, DOI:10.1038/srep30522.
- [12] TAO HUANG, HAIWEI WANG, WEIMING CHENG, YUHAO ZOU, CHANGSHENG XIE, Critical switching fluence of L10-FePt nanoparticles with practical size to ultrafast all-optical polarization switching, EPL 118(6), 2017, article ID 67006, DOI:10.1209/0295-5075/118/67006.
- [13] HOHLFELD J., MATTHIAS E., KNORREN R., BENNEMANN K.H., Nonequilibrium magnetization dynamicsof nickel, Physical Review Letters 78(25), 1997, pp. 4861–4864, DOI:10.1103/PhysRevLett.78.4861.
- [14] MALINOWSKI G., DALLA LONGA F., RIETJENS J.H., PALUSKAR P.V., HUIJINK R., SWAGTEN H.J.M., KOOPMANS B., Control of speed and efficiency of ultrafast demagnetization by direct transfer of spin angular momentum, Nature Physics 4(11), 2008, pp. 855–858, DOI:10.1038/nphys1092.
- [15] BATTIATO M., CARVA K., OPPENEER P.M., Superdiffusive spin transport as a mechanism of ultrafast demagnetization, Physical Review Letters 105(2), 2010, article ID 027203, DOI:10.1103/PhysRevLett.105.027203.
- [16] TIANQI LI, PATZ A., MOUCHLIADIS L., JIAQIANG YAN, LOGRASSO T.A., PERAKIS I.E., JIGANG WANG, Femto-second switching of magnetism via strongly correlated spin–charge quantum excitations, Nature 496, 2013, pp. 69–73, DOI:10.1038/nature11934.
- [17] KIRILYUK A., KIMEL A.V., RASING TH., Laser-induced magnetization dynamics and reversal in ferromagnetic alloys, Reports on Progress in Physics 76(2), 2013, article ID 026501, DOI:10.1088/0034-4885/76/2/026501.
- [18] EL HADRI M.S., PIRRO P., LAMBERT C.-H., PETIT-WATELOT S., QUESSAB Y., HEHN M., MONTAIGNE F., MALINOWSKI G., MANGIN S., Two types of all-optical magnetization switching mechanisms using femtosecond laser pulses, Physical Review B 94(6), 2016, article ID 064412, DOI:10.1103/PhysRevB.94.064412.
- [19] GERRITS TH., VANDEN BERG H.A.M., HOHLFELD J., BÄR L., RASING TH., Ultrafast precessional magnetization reversal by picosecond magnetic field pulse shaping, Nature 418, 2002, pp. 509–512, DOI:10.1038/nature00905.
- [20] THIELE J.-U., BUESS M., BACK C.H., Spin dynamics of the antiferromagnetic-to-ferromagnetic phase transition in FeRh on a sub-picosecond time scale, Applied Physics Letters 85(14), 2004, pp. 2857–2959, DOI:10.1063/1.1799244.
- [21] KIMEL A.V., KIRILYUK A., RASING T., Femtosecond opto-magnetism: ultrafast laser manipulation ofmagnetic materials, Laser and Photonics Reviews 1(3), 2007, pp. 275–287, DOI:10.1002/lpor.200710022.
- [22] ZHANG G.P., HÜBNER W., LEFKIDIS G., YIHUA BAI, GEORGE T.F., Paradigm of the time-resolved magneto-optical Kerr effect for femtosecond magnetism, Nature Physics 5, 2009, pp. 499–502, DOI:10.1038/nphys1315.
- [23] LE GUYADER L., SAVOINI M., EL MOUSSAOUI S., BUZZI M., TSUKAMOTO A., ITOH A., KIRILYUK A., RASING T., KIMEL A.V., NOLTING F., Nanoscale sub-100 picosecond all-optical magnetization switching in GdFeCo microstructures, Nature Communications 6, 2015, article ID 5839, DOI:10.1038/ncomms6839.
- [24] STANCIU C.D., HANSTEEN F., KIMEL A.V., KIRILYUK A., TSUKAMOTO A., ITOH A., RASING TH., All-optical magnetic recording with circularly polarized light, Physical Review Letters 99(4), 2007, article ID 047601, DOI:10.1103/PhysRevLett.99.047601.
- [25] YAOJU ZHANG, JIANPING BAI, High-density all-optical magnetic recording using a high-NA lens illuminated by circularly polarized pulse lights, Physics Letters A 372(41), 2008, pp. 6294–6297, DOI:10.1016/j.physleta.2008.08.048.
- [26] ZHUANG YOU-YI, ZHANG YAO-JU, Improving recording density of all-optical magnetic storage by using high-pass angular spectrum filters, Chinese Physics Letters 26(10), 2009, article ID 108501.
- [27] YAOJU ZHANG, YOICHI OKUNO, XUN XU, All-optical magnetic superresolution with binary pupilfilters, Journal of the Optical Society of America B 26(7), 2009, pp. 1379–1383, DOI:10.1364/JOSAB.26.001379.
- [28] YAOJU ZHANG, JIANPING BAI, Theoretical study on all-optical magnetic recording using a solid immersion lens, Journal of the Optical Society of America B 26(1), 2009, pp. 176–182, DOI:10.1364/JOSAB.26.000176.
- [29] RAVI V., SURESH P., RAJESH K.B., JAROSZEWICZ Z., ANBARASAN P.M., PILLAI T.V.S., Generation of sub-wavelength longitudinal magnetic probe using high numerical aperture lens axicon and binary phase plate, Journal of Optics 14(5), 2012, article ID 055704, DOI:10.1088/2040-8978/14/5/055704.
- [30] YUNSHAN JIANG, XIANGPING LI, MIN GU, Generation of sub-diffraction-limited pure longitudinal magnetization by the inverse Faraday effect by tightly focusing an azimuthally polarized vortexbeam, Optics Letters 38(16), 2013, pp. 2957–2960, DOI:10.1364/OL.38.002957.
- [31] SICONG WANG, XIANGPING LI, JIANYING ZHOU, MIN GU, Ultralong pure longitudinal magnetization needle induced by annular vortex binary optics, Optics Letters 39(17), 2014, pp. 5022–5025, DOI:10.1364/OL.39.005022.
- [32] SICONG WANG, XIANGPING LI, JIANYING ZHOU, MIN GU, All-optically configuring the inverse Faraday effect for nanoscale perpendicular magnetic recording, Optics Express 23(10), 2015, pp. 13530–13536, DOI:10.1364/OE.23.013530.
- [33] WANGZI MA, DAWEI ZHANG, LINWEI ZHU, JIANNONG CHEN, Super-long longitudinal magnetization needle generated by focusing an azimuthally polarized and phase-modulated beam, Chinese Optics Letters 13(5), 2015, article ID 052101.
- [34] ATUTOV S.N., CALABRESE R., GUIDI V., MAI B., RUDAVETS A.G., SCANSANI E., TOMASSETTI L., BIANCALANA V., BURCHIANTI A., MARINELLI C., MARIOTTI E., MOI L., VERONESI S., Fast and efficient loading of a Rb magneto-optical trap using light-induced atomic desorption, Physical Review A 67(5),2003, article ID 053401, DOI:10.1103/PhysRevA.67.053401.
- [35] ZHONGQUAN NIE, WEIQIANG DING, DONGYU LI, XUERU ZHANG, YUXIAO WANG, YINGLIN SONG, Spherical and sub-wavelength longitudinal magnetization generated by 4π tightly focusing radially polarized vortex beams, Optics Express 23(2), 2015, pp. 690–701, DOI:10.1364/OE.23.000690.
- [36] LIPING GONG, LU WANG, ZHUQING ZHU, XIAOLEI WANG, HUA ZHAO, BING GU, Generation and manipulation of super-resolution spherical magnetization chains, Applied Optics 55(21), 2016,pp. 5783–5789, DOI:10.1364/AO.55.005783.
- [37] GOULD T.J., BURKE D., BEWERSDORF J., BOOTH M.J., Adaptive optics enables 3D STED microscopy inaberrating specimens, Optics Express 20(19), 2012, pp. 20998–21009, DOI:10.1364/OE.20.020998.
- [38] XIANG HAO, ANTONELLO J., ALLGEYER E.S., BEWERSDORF J., BOOTH M.J., Aberrations in 4Pi microscopy, Optics Express 25(13), 2017, pp. 14049–14058, DOI:10.1364/OE.25.014049.
- [39] WEICHAO YAN, ZHONGQUAN NIE, XUERU ZHANG, YUXIAO WANG, YINGLIN SONG, Magnetization shaping generated by tight focusing of azimuthally polarized vortex multi-Gaussian beam, Applied Optics56(7), 2017, pp. 1940–1946, DOI:10.1364/AO.56.001940.
- [40] WEICHAO YAN, ZHONGQUAN NIE, XUERU ZHANG, YUXIAO WANG, YINGLIN SONG, Theoretical guideline for generation of an ultra-long magnetization needle and a super-long conveyed spherical magnetization chain, Optics Express 25(19), 2017, pp. 22268–22279, DOI:10.1364/OE.25.022268.
- [41] WEICHAO YAN, ZHONGQUAN NIE, XUERU ZHANG, YUXIAO WANG, YINGLIN SONG, Generation of an ultralong pure longitudinal magnetization needle with high axial homogeneity using an azimuthally polarized beam modulated by pure multi-zone plate phase filter, Journal of Optics 19(8), 2017, article ID 085401, DOI:10.1088/2040-8986/aa73ce.
- [42] UDHAYAKUMAR M., PRABAKARAN K., RAJESH K.B., JAROSZEWICZ Z., BELAFHAL A., Generating sub wavelength pure longitudinal magnetization probe and chain using complex phase plate, Optics Communications 407, 2018, pp. 275–279, DOI:10.1016/j.optcom.2017.09.007.
- [43] YEW E.Y.S., SHEPPARD C.J.R., Tight focusing of radially polarized Gaussian and Bessel–Gaussbeams, Optics Letters 32(23), 2007, pp. 3417–3419, DOI:10.1364/OL.32.003417.
- [44] RICHARDS B., WOLF E., Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 253(1274), 1959, pp. 358–379, DOI:10.1098/rspa.1959.0200.
- [45] KHONINA S.N., KAZANSKIY N.L., VOLOTOVSKY S.G., Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system, Journal of Modern Optics 58(9), 2011,pp. 748–760, DOI:10.1080/09500340.2011.568710.
- [46] PERSHAN P.S., Nonlinear optical properties of solids: energy considerations, Physical Review 130(3), 1963, p. 919, DOI:10.1103/PhysRev.130.919.
- [47] VANDER ZIEL J.P., PERSHAN P.S., MALMSTROM L.D., Optically-induced magnetization resulting from the inverse Faraday effect, Physical Review Letters 15(5), 1965, p. 190, DOI:10.1103/PhysRevLett.15.190.
- [48] PERSHAN P.S., VANDER ZIEL J.P., MALMSTROM L.D., Theoretical discussion of the inverse Faraday effect, Raman scattering, and related phenomena, Physical Review 143(2), 1966, p. 574, DOI:10.1103/PhysRev.143.574.
- [49] HANMING GUO, XIAOYU WENG, XIANGMEI DONG, GUORONG SUI, XIUMIN GAO, SONGLIN ZHUANG, Three dimensional optical cage formed by TEM01 mode radially polarized Laguerre-Gaussian beam, Journal of Optics 40(4), 2011, pp. 206–212, DOI:10.1007/s12596-011-0055-8.
- [50] JIANWEI CAO, QINGKUI CHEN, HANMING GUO, Creation of a controllable three dimensional optical chainby TEM01 mode radially polarized Laguerre–Gaussian beam, Optik 124(15), 2013, pp. 2033–2036, DOI:10.1016/j.ijleo.2012.06.057.
- [51] GUNDU P.N., HACK E., RASTOGI P., Superspeckles: a new application of optical superresolution, OpticsExpress 13(17), 2005, pp. 6468–6475, DOI:10.1364/OPEX.13.006468.
- [52] PRABAKARAN K., RAJESH K.B., PILLAI T.V.S., Generation of multiple sub wavelength focal spot segments using radially polarized Bessel Gaussian beam with complex phase filter, Optik 125(13), 2014,pp. 3159–3161, DOI:10.1016/j.ijleo.2013.12.009.
- [53] GUNDU P.N., HACK E., RASTOGI P., High efficient superresolution combination filter with twin LCD spatial light modulators, Optics Express 13(8), 2005, pp. 2835–2842, DOI:10.1364/OPEX.13.002835.
- [54] LI LIU, GUIYING WANG, Designing superresolution optical pupil filter with constrained global optimization algorithm, Optik 119(10), 2008, pp. 481–484, DOI:10.1016/j.ijleo.2007.03.001.
- [55] HAIFENG WANG, LUPING SHI, LUKYANCHUK B., SHEPPARD C., CHONG TOW CHONG, Creation of a needle of longitudinally polarized light in vacuum using binary optics, Nature Photonics 2, 2008, pp. 501–505, DOI:10.1038/nphoton.2008.127.
- [56] KHORSAND A.R., SAVOINI M., KIRILYUK A., KIMEL A.V., TSUKAMOTO A., ITOH A., RASING TH., Role of magnetic circular dichroism in all-optical magnetic recording, Physical Review Letters 108(12), 2012, article ID 127205, DOI:10.1103/PhysRevLett.108.127205.
- [57] MAJORS P.D., MINARD K.R.E.J., ACKERMAN G.R., HOLTOM D.F., HOPKINS C.I., PARKINSON WEBER T.J., WIND R.A., A combined confocal and magnetic resonance microscope for biological studies, Reviewof Scientific Instruments 73(12), 2002, pp. 4329–4338, DOI:10.1063/1.1517146.
- [58] GRINOLDS M.S., WARNER M., DE GREVE K., DOVZHENKO Y., THIEL L., WALSWORTH R.L., HONG S., MALETINSKY P., YACOBY A., Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins, Nature Nanotechnology 9(4), 2014, pp. 279–284, DOI:10.1038/nnano.2014.30.
- [59] UDHAYAKUMAR M., PRABAKARAN K., RAJESH K.B., JAROSZEWICZ Z., A. BELAFHAL, D. VELAUTHAPILLAI, Generation of ultra-long pure magnetization needle and multiple spots by phase modulated doughnut Gaussian beam, Optics and Laser Technology 102, 2018, pp. 40–46, DOI:10.1016/j.optlastec.2017.12.008.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-502aac17-a93b-4ca1-bba8-128fb9681289