Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The research reported in this paper focuses on the application of local binary patterns (LBPs) for surface defects detection. The surface defection detection algorithm for friction stir welded aluminum plates is the key part of the entire surface defect recognition system. Two different grades i.e AA 1200 and AA 6061 plates were similarly joined with the help of Friction Stir Welding process. Python codes for the proposed algorithm were executed on Google Colaboratory platform. The results obtained prove that the local binary patterns method can be used for real-time surface defects detection in friction stir welded joints.
Czasopismo
Rocznik
Tom
Strony
27--32
Opis fizyczny
Bibliogr. 11 poz., rys., tab., wykr.
Twórcy
autor
- Stir Research Technologies, Project Scientific Officer, Center for Artificial Intelligence and Friction Stir Welding
Bibliografia
- 1. Kaushik. (2015). A Review on use of Aluminium Alloys in Aircraft Components. i-manager's Journal on Material Science. 3. 33-38
- 2. Çam, Gürel & İpekoğlu, Güven. (2017). Recent developments in joining of aluminum alloys. International Journal of Advanced Manufacturing Technology. 91. 1851-1866. 10.1007/s00170-016-9861-0
- 3. Mishra, R.S. and Ma, Z.Y., 2005. Friction stir welding and processing. Materials science and engineering: R: reports, 50(1-2), pp.1-78
- 4. Meyghani, B.; Awang, M.B.; Emamian, S.S.; Mohd Nor, M.K.B.; Pedapati, S.R. A Comparison of Different Finite Element Methods in the Thermal Analysis of Friction Stir Welding (FSW). Metals 2017, 7, 450
- 5. Kah, P., Rajan, R., Martikainen, J. et al. Investigation of weld defects in friction-stir welding and fusion welding of aluminium alloys. Int J Mech Mater Eng 10, 26 (2015). https://doi.org/10.1186/s40712-015-0053-8
- 6. Brahnam, S., Jain, L.C., Nanni, L. and Lumini, A. eds., 2014. Local binary patterns: new variants and applications (Vol. 2). Berlin: Springer
- 7. Lian, H.C. and Lu, B.L., 2006, May. Multi-view gender classification using local binary patterns and support vector machines. In International Symposium on Neural Networks (pp. 202-209). Springer, Berlin, Heidelberg
- 8. Ahonen, T., Hadid, A. and Pietikainen, M., 2006. Face description with local binary patterns: Application to face recognition. IEEE transactions on pattern analysis and machine intelligence, 28(12), pp.2037-2041
- 9. Ojala T, Pietikäinen M, Mäenpää T. Gray scale and rotation invariant texture classification with local binary patterns. In European Conference on Computer Vision 2000 Jun 26 (pp. 404-420). Springer, Berlin, Heidelberg
- 10. Song, K. and Yan, Y., 2013. A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects. Applied Surface Science, 285, pp.858-864
- 11. Ko, J. and Rheem, J., 2016. Defect detection of polycrystalline solar wafers using local binary mean. The International Journal of Advanced Manufacturing Technology, 82(9-12), pp.1753-1764
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-501d9c0f-0cee-4741-aaed-8d7dbd39db40