PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bulk linearized CMOS differential pair transconductor for continuous-time OTA-C filter design

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the MOS differential pair driven simultaneously from gates and bulk terminals is described. An approximated analytical solution of the voltage to current transfer function has been found for the proposed circuit. Four possible combinations of gate and bulk connections of the input signal are presented. Basing on the configuration giving the best linearity, the operational transconductance amplifier (OTA) has been designed and compared, by computer simulations, to the amplifier utilizing the gate driven classic MOS pair. 3rd order filters using the OTAs with linearized and simple MOS pair have been designed and the resulting parameters have been compared. Linearization through the presented simultaneous use of gate and bulk terminals seems to be useful for low voltage applications.
Rocznik
Strony
77--84
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Department of Microelectronic Systems, Gdańsk University of Technology, 11/12 Narutowicza St., 80-233 Gdańsk, Poland
  • Department of Microelectronic Systems, Gdańsk University of Technology, 11/12 Narutowicza St., 80-233 Gdańsk, Poland
  • Department of Microelectronic Systems, Gdańsk University of Technology, 11/12 Narutowicza St., 80-233 Gdańsk, Poland
Bibliografia
  • [1] S. Koziel and S. Szczepanski, General Approach to Continuous-Time OTA-C Filters, WKŁ, Warsaw, 2011.
  • [2] T. Deliyannis, Y. Sun, and J.K. Fidler, Continuous - Time Active Filter Design, CRC Press, USA, 1999.
  • [3] R. Schaumann, M.S. Ghausi, and K.R. Laker, Design of Analog Filters: Passive, Active RC and Switched Capacitor, Engelwood Cliffs, NJ, Prentice-Hall, 1990.
  • [4] R.L. Geiger and E. Sanchez-Sinencio, “Active filter design using operational transconductance amplifiers: a tutorial”, IEEE Circuits Devices Mag. 2 (1), 20-32 (1985).
  • [5] S. Koziel, S. Szczepanski, and R. Schaumann, “A general approach to continuous-time Gm-C filters”, Int. J. Circuit Theory and Applications 31 (4), 361-383 (2003).
  • [6] G. Blakiewicz, “Technique to improve CMRR at high frequencies in CMOS OTA-C filters”, Bull. Pol. Ac.: Tech. 61 (3), 697-703 (2013).
  • [7] S.T. Dupie and M. Ismail, “High frequency CMOS transconductors”, in Analogue IC Design: The Current-Mode Approach, eds. C. Toumazou, F.J. Lidgey, and D.G. Haigh, Peter Peregrinius, London, 1990.
  • [8] S. Szczepanski, S. Koziel, and R. Schaumann, “CMOS differential pair transconductor with active - error feedback”, Proc. IEEE Int. Conf. on Electronics, Circuits and Systems (ICECS) 1, 168-171 (2003).
  • [9] J. Glinianowicz, J. Jakusz, S. Szczepanski, and Y. Sun, “Highfrequency two-input CMOS OTA for continuous-time filter applications”, IEE Proceedings Circuits, Devices and Systems 147 (1), 13-18 (2000).
  • [10] B. Nauta, Analog CMOS Filters for Very High Frequencies, Kluwer Academic Publishers, London, 1993.
  • [11] S. Szczepanski, J. Jakusz, and R. Schaumann, “A linear fully balanced CMOS OTA for VHF filtering applications”, IEEE Trans. on Circuits and Systems - II: Analog and Digital Signal Processing 44 (3), 174-186 (1997).
  • [12] S. Koziel and S. Szczepanski, “Design of highly linear tunable CMOS OTA for continuos-time filters”, IEEE Trans. on Circuits and Systems - II: Analog and Digital Signal Processing 49 (2), 110-122 (2002).
  • [13] A. Guzinski, M. Bialko, and J.C. Matheau, “Body-driven differential amplifier for application in continuous-time active C filter”, Proc. Eur. Conf. on Circuit Theory and Design (ECTD) 1, 315-320 (1987).
  • [14] T. Kulej, “Low voltage low transconductance OTA in 50 nm CMOS”, Int. Conf. Signal and Electronic Systems (ICSES) 1, 273-276 (2010).
  • [15] A. Veeravalli, E. Sanchez-Sinencio, and J. Silva-Martinez, “Transconductance amplifier structures with very small transconductances: a comparative design approach”, IEEE J. Solid-State Circuits 37 (6), 770-775 (2002).
  • [16] M.J. Carrillo, G. Torelli, M.A. Dominguez, and J.F. Duque- Carrillo, “On the input common-mode voltage range of CMOS bulk-driven input stages”, Int. J. Circuit Theory and Applications 39 (6), 649-664 (2011).
  • [17] G. Raikos and S. Vlassis, “Low-voltage bulk-driven input stage with improved transconductance”, Int. J. Circuit Theory and Applications 39 (3), 327-339 (2011).
  • [18] G. Raikos and S. Vlassis, “0.5-V bulk-driven differential amplifier”, Int. J. Circuit Theory and Applications, online publication, DOI: 10.1002/cta.1820 (2012).
  • [19] S. Chatterjee, Y. Tsividis, and P. Kinget, “0.5-V analog circuit techniques and their application in ota and filter design”, IEEE J. Solid-State Circuits 40 (12), 2373-2387 (2005).
  • [20] R. Fried and C.C. Enz, “Bulk-driven MOS transconductor with extended linear range”, Electronics Letters 32, 638-640 (1996).
  • [21] B. Pankiewicz and S. Szczepanski, “Body-tunable CMOS OTA for continuous-time analog filter applications”, Proc. IEEE Int.Conf. Electronics Circuits and Systems (ICECS) 1, 132-135 (1996).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-501d2dbb-1111-44bc-a13a-7b1271d08a8c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.