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Abstract. In this paper, the stability problem of Furuta pendulum controlled by the fractional order PD controller is presented. A mathematical
model of rotational inverted pendulum is derived and the fractional order PD controller is introduced in order to stabilize the same. The
problem of asymptotic stability of a closed loop system is solved using the D-decomposition approach. On the basis of this method,
analytical forms expressing the boundaries of stability regions in the parameters space have been determined. The D-decomposition method
is investigated for linear fractional order systems and for the case of linear parameter dependence. In addition, some results for the case of
nonlinear parameter dependence are presented. An example is given and tests are made in order to confirm that stability domains have been
well calculated. When the stability regions have been determined, tuning of the fractional order PD controller can be carried out.
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1. Introduction

The D-decomposition technique is an extremely powerful
method used in control theory for investigation of linear sys-
tems asymptotic stability. It is particularly valuable when a
system has to be synthetized by determining the values of
control parameters based on some performance criteria. This
technique has been first introduced by Neimark [1, 2] and
recognized in Russian literature as the method of principal
interest, while in Western Europe and the USA it has at-
tracted little interest. The method is based on the following
idea. Consider for example, a characteristic equation in gen-
eral form:

f(s) = ansbn + . . . + aksbk + . . . + a0s
b0 = 0, (1)

where the coefficients ak and bk(k = 0, 1, . . . , n) are nonlin-
ear functions of system parameters α and β, and b0 < b1 <
· · · < bn. If s is expressed as s = jω where ω represents
frequency, characteristic equation (1) may be rewritten as two
equations in two unknowns α and β. In other words, applying
conditions that the summations of reals and imaginaries must
go to zero independently, (1) can be specified in terms of its
real R and imaginary part I as follows:

R = R(ω, α, β) = 0, I = I(ω, α, β) = 0. (2)

If coefficients ak and bk are linear functions of parameters α
and β, Eq. (2) may be solved for α and β as:

α = α(ω), β = β(ω). (3)

In general, when parameters α and β form a nonlinear re-
lationship, the solution (3) is not possible in a closed form,
and can be solved using numerical methods. Equations (3) are
used to map imaginary axis from the s−plane onto the (α, β)
parameters plane. In this mapping boundaries are obtained,

which divide the (α, β) parameter plane into a number of
domains with a fixed root distribution. Then, the number of
roots in each of the bounded regions can be easily determined,
including those domains corresponding to the conditions of
asymptotic stability.

Control of underactuated mechanical systems is currently
an active research field and it has attracted a lot of interest in
the control community in the last years. Underactuated sys-
tems are the control systems with fewer control inputs than
degrees of freedom. This lack of inputs is the main difficulty
in controlling them. Rotational inverted pendulum is one of
the most well-known underactuated mechanical systems [3].
It is an excellent benchmark for testing different control al-
gorithms because it represents a highly nonlinear system and
unstable at the desired upright position. One of the goals of
this paper is stabilization of the inverted pendulum using frac-
tional order controller.

Fractional calculus (FC) is a mathematical topic with more
than 300 years old history, but its application to physics and
engineering has been reported only in the recent years. Frac-
tional integrate-differential operators are a generalization of
integration and derivation to non-integer order (fractional) op-
erators [4–6]. As we know, due to their functional simplicity
and performance robustness, the PID controllers are still used
for many industrial applications. On the other hand, fraction-
al calculus has the potential to accomplish what an integer-
order calculus cannot. In most cases, our objective of using
fractional calculus is to apply the fractional order controller
to enhance system performance compared to the traditional
controllers. Fractional PIβDα controller [7], CRONE con-
trollers, and fractional lead-lag compensator, are some of the
well-known fractional order controllers.

∗e-mail: pmandic@mas.bg.ac.rs

189

Unauthenticated
Download Date | 3/30/16 2:28 PM



P.D. Mandić, M.P. Lazarević, and T.B. Šekara

In this paper, the fractional order PD controller is used
for stabilization of rotational inverted pendulum. The D-
decomposition technique is used for determining stability re-
gions in the controller parameters space. This method is ap-
plied to linear fractional systems, and for the case of linear
parameters dependence. For calculating regions of asymptotic
stability an efficient computational method is developed. Once
the stability domains are determined, tuning of the fractional
order controller can be continued with.

The rest of the paper is organized as follows. A mathemat-
ical model of rotational inverted pendulum has been shown
in Sec. 2, and in Sec. 3 a fractional order PD controller has
been introduced in order to stabilize it. Section 4 presents the
D-decomposition method for calculation of stability regions
in the controller parameters space. Examples have been pro-
vided in Sec. 5 and tests with different controller parameters
have been simulated and analyzed. Section 6 concludes the
paper.

2. Mathematical model

Figure 1 depicts a schematic view of the rotational inverted
pendulum, which is also known in literature as Furuta pen-
dulum. It consists of horizontal arm and vertical pendulum,
angular positions of which are denoted as θ and ϕ, respec-
tively. Hence, it is a mechanical system with two degrees
of freedom. Torque is applied directly to the arm, while no
torque drives the pendulum. This lack of control input makes
Furuta pendulum an underactuated mechanical system diffi-
cult to control. The system has two outputs (θ and ϕ), one
control signal (external torque M ), and four state variables

represented by state vector x =
[

θ, θ̇, ϕ, ϕ̇
]T

.

Fig. 1. A schematic view of the Furuta pendulum

The system parameters are as following: m1 – mass of
the arm, m2 – mass of the pendulum, R1 – distance of the

arm pivot point to the pendulum pivot point, R2 – distance
of the pendulum pivot point to its end (extreme), 2r1, 2r2 –
total length of the arm, and pendulum respectively, Jς1 – mo-
ment of inertia of the arm with respect to its centre of mass,
Jξ2, Jη2, Jζ2 – axial moments of inertia of the pendulum with
respect to its centre of mass.

Rodriguez method [8, 9] is suggested for modelling the
system dynamics. Configuration of mechanical model can be
defined by the generalized coordinates q1 and q2 represented
by θ and ϕ, respectively. Herein, Langrange’s equations of
the second kind expressed in a covariant form are used as the
equations of motion of the inverted pendulum [3]:

n
∑

α=1

aγαq̈α +

n
∑

α=1

n
∑

β=1

Γαβ,γ q̇αq̇β = Qγ , γ = 1, 2. (4)

The coefficients aαβ represent covariant coordinates of the
basic metric tensor [aγα] ∈ R2×2 and Γαβ,γα, β, γ = 1, 2
presents Christoffel symbols of the first kind. The right side
of (4) denotes generalized spring forces, gravitational forces,
semi-dry friction and generalized control forces [10]. The gen-
eralized forces Qγ can be expressed as:

Qγ = Qg
γ + Qa

γ , γ = 1, 2, (5)

wherein Qg
γ , Qa

γ represent the generalized gravitational and
control forces, respectively. Now, the equations of motion of
Furuta pendulum can be rewritten in full form:

a11θ̈ + a12ϕ̈ + 2Γ12,1θ̇ϕ̇ + Γ22,1ϕ̇
2 = Qa

1 , (6)

a12θ̈ + a22ϕ̈ − Γ12,1θ̇
2 = Qg

2, (7)

wherein

a11 = Jς1 + Jη2 sin2(ϕ) + Jς2 cos2(ϕ) + m2R
2
1

+ m1(R1 − r1)
2 + m2(R2 − r2)

2 sin2(ϕ),

a12 = −m2R1(R2 − r2) cos(ϕ) = −K3 cos(ϕ),

a22 = Jξ2 + m2(R2 − r2)
2 = K4,

Γ12,1 = 0.5
(

m2(R2 − r2)
2 + Jη2 − Jς2

)

sin(2ϕ)

= K2 sin(2ϕ),

Γ22,1 = m2R1(R2 − r2) sin(ϕ) = K3 sin(ϕ),

Qg
2 = m2g(R2 − r2) sin(ϕ) = K1 sin(ϕ),

Qa
1 = M.

(8)

The external torque which drives the arm is denoted as M , as
shown above. Physical parameters K1, K2, K3, K4 are intro-
duced in (8) to simplify writing of the equations of motion.

The Furuta pendulum has an infinite number of equilib-
rium points (in downward and upright positions) [11]. Stable
downward equilibrium points correspond to π pendulum an-
gle and zero angular velocities (xe1 = [θ, 0, π, 0]T ). Unstable
upright equilibrium points correspond to zero pendulum an-
gle and angular velocities (xe2 = [θ, 0, 0, 0]T ). As we can
see, equilibrium points exist for ∀θ ∈ R. The goal of this
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paper is stabilization of pendulum around its unstable equi-
librium point, with additional condition θ = 0, which makes
stabilization problem more difficult to solve [12].

3. Controller design

Control strategy for stabilization of the inverted pendulum
usually consists of two different problems. The first one is
swinging phase, where one needs to steer the pendulum from
the down to the upright position. Energy control techniques
are usually used for solving this problem. When the pendu-
lum is close enough to the upright position, balancing con-
troller takes over the control and stabilizes the pendulum. The
goal of this paper is stabilization of the pendulum and find-
ing its stability domains using the D-decomposition method.
Hence, control design for the swing up controller will not be
consedered here.

Firstly, we show the simplification of the dynamic equa-
tions of the inverted pendulum using partial feedback lin-
earization [11]. If we calculate θ̈ from (7) and plug it into
(6), the following is obtained:

a11

a12

(

Qg
2 + Γ12,1θ̇

2

)

+

(

a12 −
a11a22

a12

)

ϕ̈

+ 2Γ12,1θ̇ϕ̇ + Γ22,1ϕ̇
2 = M.

(9)

Eliminating θ̈ from (9), the control input M can now be cho-
sen as:

M =
a11

a12

(

Qg
2 + Γ12,1θ̇

2

)

+

(

a12 −
a11a22

a12

)

MR

+ 2Γ12,1θ̇ϕ̇ + Γ22,1ϕ̇
2,

(10)

wherein MR stands for new control signal. Now, the simpli-
fied dynamic equations of Furuta pendulum are as follows:

θ̈ cos(ϕ) = −
K1

K3

sin(ϕ) −
K2

K3

sin(2ϕ)θ̇2 +
K4

K3

MR, (11)

ϕ̈ = MR, (12)

wherein the parameters K1, K2, K3, K4 are defined in (8).
Figure 2 illustrates in block diagram form the idea of partial
feedback linearization.

Fig. 2. Partial feedback linearization procedure

A nonlinear feedback of the form M = η (x, MR) is used
to modify the dynamics of nonlinear process so that the re-
sponse from the input MR to the output ϕ is linear. A linear
fractional PD controller can then be used to regulate the sys-
tem dynamics.

Now, to explore the behavior of the system described with

(11), (12) near the equilibrium point
(

θ, θ̇, ϕ, ϕ̇
)

= (0, 0, 0, 0)

we will linearize the system. Taylor series expansion of non-
linear terms in Eq. (11) around the equilibrium gives:

f1 = cos (ϕ) ≈ cos (ϕ)|
0

+ (ϕ − 0)
df1

dϕ

∣

∣

∣

∣

0

= 1, (13)

f2 = sin (2ϕ) θ̇2 ≈ sin (2ϕ) θ̇2

∣

∣

∣

0,0

+ (ϕ − 0)
∂f2

∂ϕ

∣

∣

∣

∣

0,0

+
(

θ̇ − 0
) ∂f2

∂θ̇

∣

∣

∣

∣

0,0

= 0,
(14)

f3 = sin (ϕ) ≈ sin (ϕ)|
0
+ (ϕ − 0)

df3

dϕ

∣

∣

∣

∣

0

= ϕ. (15)

So, the linearization around desired equilibrium point leads
to:

θ̈ = −
K1

K3

ϕ +
K4

K3

MR, (16)

ϕ̈ = MR. (17)

We can see that both Eqs. (16) and (17) are coupled by term
MR, which complicates the control design for our system.
The system (16), (17) approximates the original system (11),
(12) when we are near the equilibrium point about which the
system was linearized. Using Lyapunov’s indirect method the-
orem [11], if the linearization is asymptotically stable, then the
equilibrium point is locally asymptotically stable for the full
nonlinear system. Other words, the controller derived from
a linearized system will work for a nonlinear system if the
region of attraction is not too large.

Asymptotic stability for (ϕ, ϕ̇) can be achieved with a
simple PD controller of the form MR = −KPϕϕ − KDϕϕ̇.
It stabilizes the pendulum for KPϕ, KDϕ > 0, but it does
not stabilize the arm. The reason for this is that actuated sub-
systems (16) is coupled with the unactuated subsystem (17)
through the control input MR. This is why underactuated sys-
tems such as the inverted pendulum are difficult to implement
a full feedback linearization procedure. Therefore, the new
goal of the controller design is to improve MR so that the
asymptotic stability for (ϕ, ϕ̇, θ, θ̇) can be achieved. To ac-
complish this, an extended fractional order PD controller is
suggested. It is a generalization of conventional PD controller
[13, 14], control feedback law of which is extended as follows:

MR = − (KPθθ + KDθθ
α) −

(

KPϕϕ + KDϕϕβ
)

+
K1

K4

ϕ,

(18)
wherein α, β denote real differentiation parameters, and KPθ,
KDθ, KPϕ, KDϕ proportional and differential gains of the
controller. After substituting (18) into (16) and (17), the dy-
namic equations of the inverted pendulum become:

θ̈ +
K4

K3

KDθθ
α +

K4

K3

KPθθ = −
K4

K3

KDϕϕβ −
K4

K3

KPϕϕ,

(19)

ϕ̈+ KDϕϕβ +

(

KPϕ −
K1

K4

)

ϕ = −KDθθ
α −KPθθ. (20)

The last term on the right side of (18) is introduced to can-
cel out the term which contains ϕ in (16). The classical PD
controller is obtained for α = β = 1. Four controller gains
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(KPθ, KDθ, KPϕ, KDϕ) and two additional orders (α, β) can
be changed in order to achieve either asymptotic or relative
stability of the closed loop system. In this paper, the influ-
ence of KDθ, KDϕ, α and β parameters on the asymptot-
ic stability of the system (19), (20) is investigated using the
D-decomposition method.

4. 4. D-decomposition method for stabilization

of Furuta pendulum

Using the classical D-decomposition method [1, 2] the stabil-
ity domain in the parameter plane (KDθ, KDϕ) can be cal-
culated. These two parameters form linear relationship, and
because of this property analytical form expressing the bound-
aries of stability region can be calculated. Some results of the
D-decomposition procedure for robotic systems have been giv-
en in [15]. A characteristic polynomial of the system described
with (19), (20) is given by:

f(s) = s4 + s2
(

K4KDθs
α
/

K3 + KDϕsβ
)

−K1KDθs
α/K3

+ s2 (K4KPθ/K3 + KPϕ − K1/K4)

−K1KPθ/K3.

(21)

The parameter plane (KDθ, KDϕ) is decomposed by the
boundaries of D-decomposition into a finite number regions
D(k). Any point in domain D(k) corresponds to such values
of KDθ and KDϕ that polynomial (21) has exactly k zeroes
with positive real parts [16]. The region D(0) represents the
region of asymptotic stability of the system. Stability bound-
aries are curves on which each point corresponds to character-
istic equation having solutions on the imaginary axes. It can
be real zero boundary, complex zero boundary, or singular
line [17].

A real zero boundary is determined by the equation
f(0) = 0. It follows that polynomial (21) has no zero s = 0 if
KPθ 6= 0, which will be the case in this paper. Otherwise, the
system is structurally unstable. Complex zero boundary cor-
responds to the pure imaginary zeroes of characteristic poly-
nomial. We can obtain this boundary by solving the equation:

w4 − w2

(

K4KDθ (jw)α
/

K3 + KDϕ (jw)β
)

−K1KDθ (jw)α/K3

−w2 (K4KPθ/K3 + KPϕ − K1/K4)

−K1KPθ/K3 = 0,

(22)

which we get by substituting s = jw in polynomial (21)
and equating it to 0. Complex equation (22) can be rewritten
as [18]:

f(jw) = u(w, α, β) + jv(w, α, β) = 0, (23)

where u(w, α, β) and v(w, α, β) denote the real and imagi-
nary part of (22). Terms (jw)α and (jw)β which are required
for (22) can be expressed as [19]:

(jw)α = wα (cos (απ/2) + j sin (απ/2)) , w ≥ 0. (24)

Then, equating the real and imaginary part of (23) to zero,
one obtains the following 2-D system:
[

U1 (w, α, β) U2 (w, α, β)

V1 (w, α, β) V2 (w, α, β)

](

KDθ

KDϕ

)

=

(

Q1(w)

Q2(w)

)

, (25)

wherein

a = K4/K3, b = K1/K3,

U1(w, α, β) = (aw2 + b)wα cos(0.5απ),

U2(w, α, β) = w2+β cos(0.5βπ),

V1(w, α, β) = (aw2 + b)wα sin(0.5απ),

V2(w, α, β) = w2+β sin(0.5βπ),

Q1(w) = w4 − w2(aKPθ + KPϕ − b/a) − bKPθ,

Q2(w) = 0.

(26)

Solving it for parameters (KDθ, KDϕ), we obtain [20]:

KDθ =
∆θ

∆
, KDϕ =

∆ϕ

∆
, (27)

wherein

∆ =

∣

∣

∣

∣

∣

U1 (w, α, β) U2 (w, α, β)

V1 (w, α, β) V2 (w, α, β)

∣

∣

∣

∣

∣

, (28)

∆θ =

∣

∣

∣

∣

∣

Q1(w)

0

U2 (w, α, β)

V2 (w, α, β)

∣

∣

∣

∣

∣

,

∆ϕ =

∣

∣

∣

∣

∣

U1 (w, α, β)

V1 (w, α, β)

Q1(w)

0

∣

∣

∣

∣

∣

.

(29)

It can be easily shown that:

∆ = (aw2 + b)wα+β+2 sin(0.5(β − α)π). (30)

For ∆ 6= 0, (27) describe a curve in the (KDθ, KDϕ) pa-
rameter plane representing the complex zero boundary, for
constant values KPθ , KPϕ, α and β, as w runs from 0 to ∞.
In crossing this curve, two roots in s-plane move from one
half plane to another.

A more detailed analysis must be done when ∆ = 0. It
follows from (30) that this is true for w = 0 or β − α =
k, ∀k = 0,±2,±4, . . .. For the first case when w = 0, (26)
can be written as:

U1(0, α, β) = 0, U2(0, α, β) = 0, Q1(0) = −bKPθ,

V1(0, α, β) = 0, V2(0, α, β) = 0, Q2(w) = 0.
(31)

It follows from (25) and (31) that 0 = −bKPθ. This is not
true for KPθ 6= 0, so the system (25) has no real solutions
for w = 0. In the second case, ∆ = 0 for β − α = k,
∀k = 0,±2,±4, . . .. By limiting the parameters α and β to
be in range of (0, 2), it follows β − α = 0. Now, for β = α,
(26) reads:
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U1(w, α, α) = (aw2 + b)wα cos(0.5απ),

U2(w, α, α) = w2+α cos(0.5απ),

V1(w, α, α) = (aw2 + b)wα sin(0.5απ),

V2(w, α, α) = w2+α sin(0.5απ),

Q1(w) = w4 − w2(aKPθ + KPϕ − b/a) − bKPθ,

Q2(w) = 0.

(32)

Equation (25) can be expressed as:

wα cos(0.5απ)
[

(aw2 + b)KDθ + w2KDϕ

]

= w4 − w2(aKPθ + KPϕ − b/a) − bKPθ,
(33)

(aw2 + b)KDθ + w2KDϕ = 0. (34)

Equations (33), (34) are satisfied when:

d(w) = w4 − w2(aKPθ + KPϕ − b/a) − bKPθ = 0. (35)

Frequency ws for which d(ws) = 0 determines a singular
line. In this case ∆ = ∆θ = ∆ϕ = 0, and D-decomposition
contains not a point, but a whole line. This singular line can
be obtained from either (33) or (34), and it reads:

KDϕ = −

(

a +
b

w2
s

)

KDθ. (36)

Stability boundaries in (KDθ, KDϕ) parameter space are de-
termined by (27) and (36). Now, an example will be given in
order to confirm that stability domains are well calculated.

5. Simulation results

In this section, numerical simulations of the proposed method
have been presented. Physical parameters of the system K1,
K2, K3, K4 are taken from the real laboratory model of Furu-
ta pendulum, and have the following values: K1 = 6.51·10−2,
K2 = 9.18·10−4, K3 = 1.42·10−3, and K4 = 1.83·10−3. Us-
ing the D-decomposition method, stable and unstable regions
in parameter space (KDθ, KDϕ) are obtained. Checking one
arbitrary test point within each region, and testing the stability
of polynomial (21) using the inverse Laplace transformation,
one can find the domains of asymptotic stability of the system
described with (19), (20). To simplify, in this simulation only
the stability region D(0) has been presented.

Equations (27) and (36) determine the stability boundaries
in parameter space (KDθ, KDϕ). For constant KPθ, KPϕ, α
and β, stability region in (KDθ, KDϕ) parameter space is cal-
culated. Practically, instead of (KDθ, KDϕ) we could choose
any other two out of these six parameters and examine their
influence on asymptotic stability of the system, but cover-
ing all the cases could not be done herein due to limitations
in paper size. Still, it is interesting to briefly consider what
happens when fractional derivatives are taken for parameters
instead of (KDθ, KDϕ). In this case, if we choose to deter-
mine the influence of α and β parameters on system stability,
two implicit, nonlinear equations are obtained analytical so-
lution of which is very difficult to find. Solving this task is

beyond the scope of paper, and reader is referred to [14] where
special attention is given to this problem, with alternative D-
decomposition procedure suggested for resolving it. However,
the influence of α and β parameters on the system stability
can still be investigated herein indirectly using the procedure
explained in previous section. More specifically, repeating the
D-decomposition method in (KDθ, KDϕ) parameters space,
but for different values of α parameter (while β remains con-
stant), stability region in (KDθ, KDϕ, α) parameters plane
can be obtained. This way, two qualitative improvements are
achieved:

• D-decomposition method is extended from two-
dimensional to three-dimensional parameters space and,

• D-decomposition method for linear parameter dependence
is extended for the case of nonlinear parameter dependence,
without solving directly nonlinear equations.

Now, the influence of (KDθ, KDϕ, α) parameters on
the system stability can be investigated using the D-
decomposition approach. Controller gains KPθ and KPϕ

are assumed to be known and chosen as: KPθ = −0.022,
KPϕ = 41.5, while β = 1. For the case α ∈ (0, 2) the
stability regions have been plotted and depicted in Fig. 3.

Fig. 3. 3D Stability regions for α = (0, 2), β = 1

It is noted that different choices of α lead to different
stability regions. The value of α giving the biggest stability
region can be chosen. Picking a point deep inside stability
region we ensure that system is more robust with respect to
parameter variations, which implies bigger stability margins.
Global stability region in a 2D plot is shown in Fig. 4.

For α = β = 1 stability region is determined only with
singular lines:

KDϕ = −267.2KDθ, KDϕ = −9.11KDθ. (37)

Now, by varying β from 0 to 2 and repeating the above
procedure while α remains constant (α = 1), the following
stability regions in (KDθ, KDϕ, β) parameters space can be
obtained, as shown in Fig. 5.
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Fig. 4. 2D Stability regions for α = (0, 2), β = 1

Fig. 5. 3D stability regions for β = (0, 2), α = 1

The stability region in a 2D plot is shown in Fig. 6. It can
be seen that the biggest stability region is obtained for β ≈ 1.
As in the previous example, singular lines are determined by
(37) and for the case α = β = 1. In this example, we could

Fig. 6. 2D stability regions for β = (0, 2), α = 1

choose any other constant value for α instead of α = 1. For
example, if we choose α = α∗ = const, we would obtain
similar results, except that singular lines would be calculated
for β = α∗.

Based on Lyapunov’s indirect method theorem, the sta-
bility regions obtained in the above examples for the system
(16), (17), are the same as for the nonlinear system (11), (12),
but only in the small area of the equilibrium point.

As mentioned before, the stability domain D(0) in all ex-
amples is chosen by testing an arbitrary point and checking
the stability of polynomial (21). Herein, a simulation is per-
formed to confirm that stability boundaries are well calculated.
In Fig. 7 four different points for α = 0.9, β = 1.1 are tested
using the impulse response.

Fig. 7. Stability region testing

Points have been marked as a, b, c and d. As we can
see, point a lies outside the stability region. If the parameters
(KDθ, KDϕ) are determined by point b and c, the closed loop
system should be stable, while the one with point d should be
on the stability margin.

Using the numerical inverse Laplace transformation im-
pulse response of 1/f(s) for each point is obtained. Figure
8 shows the results. In this paper, numerical inverse Laplace
transform based on the complex Fourier series approximation
is used. Effective numerical algorithms can be developed in
for example, Matlab environment. This procedure can be used
to invert rational as well irrational or transcendental functions
of the complex variable s. The required accuracy can be ac-
complished only at the cost of longer computational time, and
without changing the algorithm. Reference [21] is added to
explain in more depth the numerical calculation of the inverse
Laplace transformation used in this paper.

From Fig. 8 we can see the impulse responses are as ex-
pected, which confirms that the stability domain has been
properly determined.
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Fig. 8. Impulse response for points a, b, c and d

6. Conslusions

This paper deals with the stability problem of the inverted pen-
dulum controlled by a fractional order PD controller. Firstly,
the mathematical model of Furuta pendulum is derived. Then,
a fractional order PD controller is introduced in order to sta-
bilize it. D-decomposition method is used for determining
stability region in controller parameters space. Also, the D-
decomposition technique is extended for the linear fractional
systems and for the case of linear parameters dependence.
Then, the results obtained are used and generalized for the
case of nonlinear parameter dependence. In order to confirm
that stability boundaries are well calculated certain examples
are given and tests are made.

A more detailed analysis of the D-decomposition method
for linear fractional order systems will be a subject of future
research. More precisely, special attention will be given to the
problem of relative stability, since in this paper only absolute
stability of the system is considered. Further, generalization
of D-decomposition technique for the case of nonlinear pa-
rameter dependence will be investigated. Also, transfer from
simulation to real laboratory model of Furuta pendulum will
be considered in a future work.
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[8] V. Čović and M.P. Lazarević, Robot Mechanics, Faculty of

Mechanical Engineering, Belgrade, 2009, (in Serbian).
[9] M.P. Lazarević, M. Rapaić, and T.B. Šekara, “Introduction to
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