PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multipurpose Riparian Zone Design – Enhancing Conservation and Pollution Control for a Sustainable Lake Tondano

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research focuses on developing a multipurpose riparian zone designed to effectively reduce erosion and control nutrient flow into Lake Tondano. The goal is to enhance both conservation and pollution control strategies for sustainable ecosystem management. Conducted at Lake Tondano in Minahasa, Indonesia, the research followed three main stages: data collection, analysis, and design. The data collection included a vegetation survey of riparian species, land use mapping, and measuring nitrogen and phosphorus levels in lake sediments. A total of 91 plant species from 60 genera and 42 families were documented. Based on their Importance Value Index (IVI), non-invasive status, and nutrient absorption capabilities, 15 species were selected for restoration in areas with high nutrient concentrations, with sediment levels recorded at 0.09% nitrogen and 0.06% phosphorus in impacted zones. These plant species were carefully identified and rigorously tested, originating from intact riparian zones. They will be strategically employed in areas facing significant challenges from nutrient overloading. Using QGIS analysis, a riparian zone measuring 100 × 30 m was designed at coordinates 1.1745604 latitude and 124.8972748 longitude, targeting areas most impacted by nutrient pollution, which poses a risk of eutrophication and negatively affects aquatic ecosystems. The multipurpose riparian zone incorporates distinct wet, transition, and dry zones, employing a zigzag planting pattern to optimize pollutant filtration and nutrient uptake. This design effectively addresses critical issues of erosion and nutrient excessive enrichment, promoting ecological health and biodiversity in the region. The novel contributions of this study include identifying specific plant species capable of thriving in nutrient-rich sediments and quantifying their nutrient absorption capacities, thereby providing a scientifically grounded model for similar conservation efforts in vulnerable ecosystems and enhancing overall resilience. However, long-term impacts on water quality require further research to assess nutrient mitigation efficacy.
Twórcy
  • Department of Biology, Universitas Negeri Manado, Unima Campus Street, Tonsaru, South Tondano District, Minahasa, Indonesia
  • Department of Physics Education, Universitas Negeri Manado, Unima Campus Street, Tonsaru, South Tondano District, Minahasa, Indonesia
  • Department of Science Education, Universitas Negeri Manado, Unima Campus Street, Tonsaru, South Tondano District, Minahasa, Indonesia
  • Department of Science Education, Universitas Negeri Manado, Unima Campus Street, Tonsaru, South Tondano District, Minahasa, Indonesia
  • Department of Physics, Universitas Negeri Manado, Unima Campus Street, Tonsaru, South Tondano District, Minahasa, Indonesia
  • Department of Biology Education, Universitas Negeri Manado, Unima Campus Street, Tonsaru, South Tondano District, Minahasa, Indonesia
Bibliografia
  • 1. Ailstock, M.S., Norman, C.M., Bushmann, P.J. 2001. Common reed Phragmites australis: Control and effects upon biodiversity in freshwater nontidal wetlands. Restoration Ecology, 9(1), 49–59. https://doi.org/10.1046/j.1526-100X.2001.009001049.x
  • 2. Aneja, V.P., Roelle, P.A., Murray, G.C., Southerland, J., Erisman, J.W., Fowler, D., Asman, W.A.H., Patni, N. 2001. Atmospheric nitrogen compounds. II: Emissions, transport, transformation, deposition and assessment. Atmospheric Environment, 35(11), 1903–1911. https://doi.org/10.1016/S1352-2310(00)00543-4
  • 3. Bahn, G.S., An, B.C. 2020. Analysis of environmental purification effect of riparian forest with poplar trees for ecological watershed management: A case study in the floodplain of the dam reservoir in Korea. Sustainability (Switzerland), 12(17), 1–16. https://doi.org/10.3390/SU12176871
  • 4. Bahri, S. 2016. Identification of nitrogen (N) and phosphorus (P) pollution sources contributing to the excessive growth of aquatic plants in Lake Tempe, South Sulawesi (in Indonesia). Jurnal Sumber Daya Air, 12(2), 159–174. https://doi.org/10.32679/jsda.v12i2.63
  • 5. Balachandran, T., Nanthakumaran, A., Devaisy, S., Sivanesan, K.S. 2018. Role of colocasia esculenta in constructed wetlands for treating rice mill wastewater. AGRIEAST: Journal of Agricultural Sciences, 12(2), 19. https://doi.org/10.4038/agrieast.v12i2.56
  • 6. Bindu, T., Sylas, V.P., Mahesh, M., Rakesh, P.S., Ramasamy, E.V. 2008. Pollutant removal from domestic wastewater with Taro (Colocasia esculenta) planted in a subsurface flow system. Ecological Engineering, 33(1), 68–82. https://doi.org/10.1016/j.ecoleng.2008.02.007
  • 7. Burt, T.P., Howden, N.J.K., Worrall, F., Whelan, M.J., Bieroza, M. 2011. Nitrate in United Kingdom rivers: Policy and its outcomes since 1970. Environmental Science and Technology, 45(1), 175–181. https://doi.org/10.1021/es101395s
  • 8. Champagne, E.J., Guzzo, M.M., Gutgesell, M.K., McCann, K.S. 2022. Riparian buffers maintain aquatic trophic structure in agricultural landscapes. Biology Letters, 18(3). https://doi.org/10.1098/rsbl.2021.0598
  • 9. Chang, D., Lai, Z., Li, S., Li, D., Zhou, J. 2021. Critical source areas’ identification for non-point source pollution related to nitrogen and phosphorus in an agricultural watershed based on SWAT model. Environmental Science and Pollution Research, 28(34), 47162–47181. https://doi.org/10.1007/s11356-021-13973-9
  • 10. Chapman, K., Boucher, J. 2020. Phosphorus phytoremediation using selected wetland plants in constructed floating mats. Applied Water Science, 10(6), 1–6. https://doi.org/10.1007/s13201-020-01215-1
  • 11. Chen, M., Zhang, X., Jiang, P., Liu, J., You, S., Lv, Y. 2022. Advances in heavy metals detoxification, tolerance, accumulation mechanisms, and properties enhancement of Leersia hexandra Swartz. Journal of Plant Interactions, 17(1), 766–778. https://doi.org/10.1080/17429145.2022.2096266
  • 12. Coates, D. 2023. Ecosystem restoration and inland food fisheries in developing countries – opportunities for the United Nations Decade on Ecosystem Restoration 2021–2030, 1231. FAO Fisheries and Aquaculture. https://doi.org/10.4060/cc7082en
  • 13. Cole, L.J., Stockan, J., Helliwell, R. 2020. Managing riparian buffer strips to optimise ecosystem services: A review. Agriculture, Ecosystems and Environment, 296(February), 106891. https://doi.org/10.1016/j.agee.2020.106891
  • 14. Dodds, W.K., Whiles, M.R. 2010. Nitrogen, Sulfur, Phosphorus, and Other Nutrients. In Freshwater Ecology (2nd Ed., pp. 345–373). Academic Press. https://doi.org/10.1016/b978-0-12-374724-2.00014-3
  • 15. Dunn, R.M., Hawkins, J.M.B., Blackwell, M.S.A., Zhang, Y., Collins, A.L. 2022. Impacts of different vegetation in riparian buffer strips on runoff and sediment loss. Hydrological Processes, 36(11), 1–13. https://doi.org/https://10.1002/hyp.14733
  • 16. Gerakis, A., Rasse, D., Kavdir, Y., Smucker, A., Katsalirou, I., Ritchie, J. 2006. Simulation of leaching losses in the nitrogen cycle. Communications in Soil Science and Plant Analysis, 37(13–14), 1973–1997. https://doi.org/10.1080/00103620600767462
  • 17. Ghaly, A., Ramakhrishnan, V.V. 2015. Nitrogen sources and cycling in the ecosystem and its role in air, water and soil pollution: A critical review. Journal of Pollution Effects & Control, 3(2). https://doi.org/10.4172/2375-4397.1000136
  • 18. Glibert, P.M., Trice, T.M., Michael, B., Lane, L. 2005. Urea in the tributaries of the Chesapeake and coastal Bays of Maryland. Water, Air, and Soil Pollution, 160(1–4), 229–243. https://doi.org/10.1007/s11270-005-2546-1
  • 19. Goebel, P.C., Palik, B.J., Pregitzer, K.S. 2003. Plant diversity contributions of riparian areas in watersheds of the Northern Lake States, USA. Ecological Applications, 13(6), 1595–1609.
  • 20. Government of the Republic of Indonesia. 2001. Government Regulation of the Republic of Indonesia Number 82 of 2001 concerning Water Quality Management and Water Pollution Control (in Indonesia). In Peraturan Pemerintah tentang Pengelolaan Kualitas Air dan Pengendalian Pencemaran Air 1–22.
  • 21. Grossman, A.R., Aksoy, M. 2018. Algae in a phosphorus‐limited landscape. In Annual Plant Reviews online 48. https://doi.org/10.1002/9781119312994.apr0527
  • 22. Haygarth, P.M., Condron, L.M., Heathwaite, A.L., Turner, B.L., Harris, G.P. 2005. The phosphorus transfer continuum: Linking source to impact with an interdisciplinary and multi-scaled approach. Science of the Total Environment, 344(1–3), 5–14. https://doi.org/10.1016/j.scitotenv.2005.02.001
  • 23. Henning, B.M., Remsburg, A.J. 2009. Lakeshore vegetation effects on avian and anuran populations. American Midland Naturalist, 161(1), 123–133. https://doi.org/10.1674/0003-0031-161.1.123
  • 24. Hupp, C.R., Rinaldi, M. 2007. Riparian vegetation patterns in relation to fluvial landforms and channel evolution along selected rivers of Tuscany (Central Italy). Annals of the Association of American Geographers, 97(1), 12–30. https://doi.org/10.1111/j.1467-8306.2007.00521.x
  • 25. Janus, L.L., Vollenweider, R.A. 1981. The OECD Cooperative Programme on Eutrophication.
  • 26. Johnston, A.E., Poulton, P.R., Fixen, P.E., Curtin, D. 2014. Phosphorus. Its Efficient Use in Agriculture. In Advances in Agronomy 1st ed., 123. Elsevier Inc. https://doi.org/10.1016/B978-0-12-420225-2.00005-4
  • 27. Karouw, C.J.V., Soeryanto. 2024. Changes in land use and their impact on the environmental degradation of Lake Tondano in Minahasa Regency (Indonesia). Syntax Literate, 9(4), 1–23.
  • 28. Konstantinou, I.K., Hela, D.G., Albanis, T.A. 2006. The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. Review on occurrence and levels. Environmental Pollution, 141(3), 555–570. https://doi.org/https://10.1016/j.envpol.2005.07.024
  • 29. Kumurur, V.A. 2002. Strategic Aspects of Integrated Management of Lake Tondano (in Indonesia). Ekoton, 2(1), 73–80.
  • 30. Li, M., Li, Y., Zhang, Y., Xu, Q., Iqbal, M. S., Xi, Y., Xiang, X. 2022. The significance of phosphorus in algae growth and the subsequent ecological response of consumers. Journal of Freshwater Ecology, 37(1), 57– 69. https://doi.org/10.1080/02705060.2021.2014365
  • 31. Lin, H., You, S., Liu, L. 2019. Characterization of microbial communities, identification of Cr(VI) reducing bacteria in constructed wetland and Cr(VI) removal ability of bacillus cereus. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-019-49333-4
  • 32. Liu, J., Zhang, X.-H., You, S.- H., Wu, Q.-X., Chen, S.-M., Zhou, K.-N. 2014. Cr(VI) removal and detoxification in constructed wetlands planted with Leersia hexandra Swartz. Ecological Engineering, 71, 36–40. https://doi.org/10.1016/j.ecoleng.2014.07.047
  • 33. Machate, O., Schmeller, D. S., Schulze, T., Brack, W. 2023. Review: mountain lakes as freshwater resources at risk from chemical pollution. Environmental Sciences Europe, 35(1). https://doi.org/10.1186/s12302-022-00710-3
  • 34. Moningka, V.V., Sinolungan, M.T.M., Kaunang, D., Kawulusan, R. 2015. Physical and Chemical Properties of Sediment in Tondano Lake (in Indonesia). In Cocos, 6(9), 1–6.
  • 35. Moningkey, A.T., Rampengan, M.M.F., Tumengkol, A.A., Kumaat, J.C. 2022. Study of bathymetry and sedimentation in Tondano Lake. IOP Conference Series: Earth and Environmental Science, 986(1). https://doi.org/10.1088/1755-1315/986/1/012038
  • 36. Moraes, A.B., Wilhelm, A.E., Boelter, T., Stenert, C., Schulz, U.H., Maltchik, L. 2014. Reduced riparian zone width compromises aquatic macroinvertebrate communities in streams of southern Brazil. Environmental Monitoring and Assessment, 186(11), 7063– 7074. https://doi.org/10.1007/s10661-014-3911-6
  • 37. Naiman, R.J., Décamps, H. 1997. The ecology of interfaces: Riparian zones. Annual Review of Ecology and Systematics, 28(102), 621–658. https://doi.org/10.1146/annurev.ecolsys.28.1.621
  • 38. Pulley, S., & Collins, A. L. 2019. Field-based determination of controls on runoff and fine sediment generation from lowland grazing livestock fields. Journal of Environmental Management, 249(February). https://doi.org/10.1016/j.jenvman.2019.109365
  • 39. Qin, B., Gao, G., Zhu, G. W., Zhang, Y., Song, Y., Tang, X., Xu, H., Deng, J. 2013. Lake eutrophication and its ecosystem response. Chinese Science Bulletin, 58(9), 961–970. https://doi.org/10.1007/s11434-012-5560-x
  • 40. Raco, B., Wicaksono, A., Triweko, R.W. 2022. The level of erosion risk due to land cover change in the watershed area of Lake Tondano (in Indonesia). Jurnal Teknik Sipil, 11(1), 63–76.
  • 41. Raun, W.R., Solie, J.B., Johnson, G.V., Stone, M.L., Mullen, R.W., Freeman, K.W., Thomason, W.E., Lukina, E.V. 2002. Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agronomy Journal, 94, 815–820.
  • 42. Roberts, W.M., Stutter, M.I., Haygarth, P.M. 2012. Phosphorus retention and remobilization in vegetated buffer strips: A review. Journal of Environmental Quality, 41(2), 389–399. https://doi.org/10.2134/jeq2010.0543
  • 43. Runtuwene, S.E.Y., Ratag, S.P., Lasut, M.T. 2023. Community participation of Peleloan Village in Tondano Selatan District, Minahasa Regency in Lake Tondano conservation activities (in Indonesia). 2(1), 5–9.
  • 44. Satiroff, J.A., Messer, T.L., Mittelstet, A.R., Snow, D.D. 2021. Pesticide occurrence and persistence entering recreational lakes in watersheds of varying land uses. Environmental Pollution, 273, 116399. https://doi.org/10.1016/j.envpol.2020.116399
  • 45. Schindler, D.W., Carpenter, S.R., Chapra, S.C., Hecky, R.E., Orihel, D.M. 2016. Reducing phosphorus to curb lake eutrophication is a success. Environmental Science and Technology, 50(17), 8923– 8929. https://doi.org/10.1021/acs.est.6b02204
  • 46. Setyono, P., Himawan, W. 2018. Analyses of bioindicators and physicochemical parameters of water of Lake Tondano, North Sulawesi Province, Indonesia. Biodiversitas, 19(3), 817–824. https://doi.org/10.13057/biodiv/d190315
  • 47. Sinolungan, M.T.M., Soeroto, B., Kondo, F., Koumoto, T. 2008. The geochemical characteristics of sediment in Tondano Lake, Indonesia: Heavy metals and organic matter contents, and grain size distribution. Paddy and Water Environment, 6(3), 341–348. https://doi.org/10.1007/s10333-008-0132-z
  • 48. Sittadewi, E.H. 2008. Strategic functions of Lake Tondano, Ecosystem Changes, and the Problems That Occur (in Indonesia). J. Tek. Ling., 9(1), 59–66.
  • 49. Walangitan, H.D., Rotinsulu, W.C., Paat, F.J. 2024. analysis of management strategies for lake tondano ecosystem in north sulawesi, Indonesia using SWOT and AHP methods. Revista de Gestão Social e Ambiental, 1–20.
  • 50. Wantasen, S., Luntungan, J.N. 2016. Spatial-temporal distribution of nitrogen in the watershed of Lake Tondano, North Sulawesi Province (in Indonesia). Bumi Lestari Journal of Environment, 16(1), 16–22. https://doi.org/10.24843/blje.2016.v16.i01.p03
  • 51. Yang, F., Yan, Z.Y., Liu, Y.N., Han, H., Gong, W., Ni, H.W. 2014. Research on the plant selection of buffer zone and pollutants removal ability of plants in ashi river Basin. Applied Mechanics and Materials, 692, 44–49. https://doi.org/10.4028/www.scientific.net/AMM.692.44
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50105e42-5944-4c00-bfa2-50625e2a098e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.