PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of numerical models of an integral bridge resting on an elastic half-space

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents three methods of the numerical modeling of a 60 m long integral bridge structure resting on an elastic half-space. For the analysis, three bridge models were built using Abaqus FEA software. Models A and C represent complex three-dimensional numerical models consisting of the bridge structure and the soil layer beneath it. The soil layer on which the bridge is resting was modeled as a homogeneous, isotropic, continuous, and elastic semi-infinite body elastic half-space. Model B represents a simple three-dimensional numerical model consisting of just the bridge structure. The stiffness of the soil layer beneath the structure in model B was modeled with spring constants derived for shallow footing foundation based on the theory for an elastic half-space. This model represents an engineering approach to the design of an integral bridge. In all models, the bridge deck is monolithically connected with abutment walls and intermediate piers. The bridge is made of cast-in-situ reinforced concrete. All material constants used in the analysis are presented in the table. Self-weight, uniformly distributed load, and thermal longitudinal expansion of the bridge deck were applied to the bridge models. Due to the nonlinear boundary condition used in the supports of the bridge model A, such as contact and friction, the superposition principle cannot be used in the calculations of this model. For this reason, all the loads involved in all bridge models were combined into a single load case and the large displacement formulation was used in the static analysis. The self-weight of the soil layer beneath the structure was omitted in the analysis. The author is focused on the method of modeling an integral bridge structure resting on elastic soil. For the purpose of this paper, only two piers from each model were selected, from which the internal forces and displacements were compared. Based on the analysis, it was concluded that it is possible to design an integral bridge by building its simplified numerical model, once the conditions given in the conclusions are met.
Wydawca
Rocznik
Strony
337--348
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Wroclaw University of Science and Technology, Faculty of Civil Engineering Wrocław, Poland
Bibliografia
  • [1] Lock R. J. (2002). Integral Bridge Abutments. CUED/D-SOILS/TR320.
  • [2] Furtak K., Wrana B. (2005). Mosty zintegrowane. Wydawnictwo komunikacji i Łączności Warszawa, ISBN: 832061550X.
  • [3] Helowicz A. (2017). Wieloprzęsłowe wiadukty zintegrowane z przęsłami skrzynkowymi – doświadczenie projektanta. Acta Scientiarum Polonorum. Architectura, vol. 16, no. 3, (pp. 107–117).
  • [4] Helowicz A. (2020). Integral bridge and culvert design, Designer’s experience. Open Engineering, (Vol. 10, no. 1, Jun 2020).
  • [5] Helowicz A. (2021). Impact of subgrade and backfill stiffness on values and distribution of bending moments in integral box bridge, Studia Geotechnica et Mechanica, (Vol. 43, nr 2, pp. 90–98).
  • [6] Helowicz A. (2024). Modelling of foundation stiffness beneath intermediate support of 178 m long integral viaduct. Archives of Civil Engineering. No. 2/2024.
  • [7] BA42/96 (2003), The Design of Integral Bridges. Design Manual for Roads and Bridges, Volume 1, Section 3, Part 12. The Stationery Office, London, UK.
  • [8] Pipinato A. et al. (2022). Innovative Bridge Design Handbook, Construction Rehabilitation and Maintenance, Second Edition. Butterworth-Heinemann is an imprint of Elsevier, ISBN 9780128235508.
  • [9] Nicholson B. A. (1998). Integral abutments for prestressed beam bridges. Prestressed Concrete Association, ISBN 0950034770.
  • [10] Biddle A. R., Iles D. C., Yandzio E., (1997). Integral Steel Bridges – Design Guidance. The Steel Construction Institute Publication, SCI P163, ISBN 1859420532.
  • [11] Way J. A., Yandzio E. (1997). Integral Steel Bridges. Design of a Single-Span Bridge – Worked Example. The Steel Construction Institute Publication, SCI P180. ISBN 1859420567.
  • [12] Feldmann M., Naumes J., Pak D. et.al (2010). Economic and Durable Design of Composite Bridges with Integral Abutments – Design Guide. RFCS publications. ISBN 978-92-79-22157-6.
  • [13] Taylor, A.G.; Chung, J.H. (2022). Explanation and Application of the Evolving Contact Traction Fields in Shallow Foundation Systems. Geotechnics, (Vol. 2), 91–113. Available: https://doi.org/10.3390/geotechnics2010004
  • [14] Luo S. De Luca F. De Risi R. et al. (2022). Challenges and perspectives for integral bridges in the UK: PLEXUS small-scale experiments. ICE Publishing. Available: https://doi.org/10.1680/jsmic.21.00020
  • [15] Stastny A., Stein R., Tschuchnigg F. (2022). Long-term monitoring of the transition zone of an integral railway bridge in Germany. International Symposium 11th Field Monitoring in Geomechanics.
  • [16] Stastny A., Knittel L., Meier T. Tschuchnigg F. (2022). Experimental determination of hypoplastic parameters and cyclic numerical analysis for railway bridge backfills. Acta Geotechnica, Springer.
  • [17] Reddy B. R., Reddy Ch. S. (2020). Seismic Performance Evaluation of a Fully Integral Concrete Bridge with End-Restraining Abutments. Journal of Engineering Sciences. (Vol.11, Issue2), ISSN NO: 0377-9254.
  • [18] Featherston. N., R. (2022). Parametric modelling of integral bridge soil spring reactions. Thesis for the degree of Master of Engineering (Research) in the Faculty of Civil Engineering at Stellenbosch University.
  • [19] Hambly E. C. (1991). Bridge deck behaviour, 2nd ed. E & FN Spon, London and New York.
  • [20] Gorbunov-Posadov M. I. (1949). Балки и плиты на упругом основании. Издательство Министерства Строительства Предприятий Машиностроения, Москва.
  • [21] Gorbunov-Posadov M. I. (1956). Obliczenie konstrukcji na podłożu sprężystym. Wydawnictwo Budownictwo i Architektura. Warszawa.
  • [22] Barkan D. D. (1962). Dynamics of Bases and Foundation. The McGraw-Hill Book Company, New York, USA.
  • [23] PN-EN 1992-1-1. (2008). Projektowanie konstrukcji z betonu. Część 1-1: Reguły ogólne I reguły dla betonów. PKN.
  • [24] Abaqus FEA Software, “Abaqus analysis user’s manual”, Version 2016, Dassault Systemes. [Online]. Available: http://130.149.89.49:2080/v2016/index.html.
  • [25] Lambe T.W., Whitman R.V. (1969). Soil Mechanics. John Wiley, New York, USA.
  • [26] Richart F. E., Hall J. R., Woods R. D. (1970). Vibrations of Soils and Foundations. Prentice-Hall, New Jersey, USA.
  • [27] Bowles J. E. (1997). Foundation analysis and design. Fifth Edition. The McGraw-Hill Companies, Inc. ISBN 0079122477, New York USA.
  • [28] PN-EN 1991-1-5. (2005). Oddziaływania na konstrukcje. Część 1-5: Oddziaływania ogólne. Odziaływania termiczne. PKN.
  • [29] Pakos W., Helowicz A. (2024). Theoretical and numerical modeling of a shallow foundation stiffness based on the theory of elastic half-space. The publication is accepted for publication in the journal Studia Geotechnica et Mechanica.
  • [30] Kuczma S. M., Świtka R. (1990). Bending of elastic beams on Winkler-type viscoelastic foundations with unilateral constrains. Computers and Structures, vol. 34, no 1, 125—136.
  • [31] Kuczma S. M. (1999). A viscoelastic-plastic model for skeletal structural systems with clearances. Computer Assisted Mechanics and Engineering Sciences, no 6, 83—106.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-500ded1c-1403-414b-8b2a-be6cf18b81e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.