PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

State of the Art in Predictive Control of Wheeled Mobile Robots

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper is concerned with the problem of tracking control of wheeled mobile robots (WMRs) using predictive control systems. Various kinematic structures of WMRs important from the point of view of motion control are discussed. A hierarchical approach to the problem of motion control of this kind of robots is presented. The problems of trajectory tracking and path following control of WMRs are briefly discussed. The methods of predictive control of WMRs are described in detail and the following aspects relevant to predictive control are considered: kinematic structures of robots, slip of wheels and its compensation, assumed constraints, methods of optimization of the objective function, problems of model nonlinearity, linearization and discretization, stability of the control system and use of the state observers.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Mechatronics, Warsaw, 02-525, POLAND
autor
  • Industrial Research Institute for Automation and Measurements (PIAP), Warsaw, 02486, POLAND
Bibliografia
  • [1] Amoozgar M.H., Zhang Y.M., “Trajectory tracking of Wheeled Mobile Robots: A kinematical approach”. In: Proceedings of 2012 8th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, MESA 2012, 275–280. DOI: 10.1109/MESA.2012.6275574.
  • [2] Araújo, H.X. et al., “Model predictive control based on LMIs applied to an omni-directional mobile robot”. In: IFAC Proceedings Volumes, 2011, 8171–8176.
  • [3] Argomedo F.B. et al., “Constrained Model Predictive Control of a skid-steering mobile robot”. In: 2009 European Control Conference, ECC’09, August 2009, Budapest, Hungary, 4653–4658.
  • [4] Armesto L. et al., “Duality-Based Nonlinear Quadratic Control: Application to Mobile Robot Trajectory-Following”, IEEE Transactions on Control Systems Technology, vol. 23, no. 4, 2015, 1494–1504.
  • [5] Barreto S., J.C.L. et al., “Design and implementation of model-predictive control with friction compensation on an omnidirectional mobile robot”, IEEE ASME Trans. Mechatron., vol. 19, no. 2, 2014, 467–476. DOI: 10.1109/TMECH.2013.2243161.
  • [6] Bature A.A. et al., “Identification and model predictive position control of Two Wheeled Inverted Pendulum mobile robot”, J. Teknol., vol. 73, no. 6, 2015, 153–156. DOI: 10.11113/jt.v73.4467.
  • [7] Brezak M. et al., “Experimental comparison of trajectory tracking algorithms for nonholonomic mobile robots”. In: IECON Proceedings (Industrial Electronics Conference), 2009, 2229–2234. DOI:10.1109/IECON.2009.5415188.
  • [8] Cartade P. et al., “Adaptive and predictive control of a mobile robots fleet: Application to offroad formation regulation”. In: Proceedings –IEEE International Conference on Robotics and Automation, 2013, 1836–1842.
  • [9] Conceição, A.G.S. et al., Predictive control of an omnidirectional mobile robot with friction compensation. In: Proceedings - 2010 Latin American Robotics Symposium and Intelligent Robotics Meeting, LARS 2010. 30–35 (2010).
  • [10] Conceição A.S. et al., “A nonlinear model predictive control strategy for trajectory tracking of a fourwheeled omnidirectional mobile robot”, Optim. Control Appl. Methods., vol. 29, no. 5, 2008, 335–352. DOI: 10.1002/oca.827.
  • [11] Deng J. et al., “Trajectory tracking of mobile robots based on model predictive control using primal dual neural network”. In: Xu S. and Zhao Q. (eds.), Proceedings of the 33rd Chinese Control Conference,CCC 2014, IEEE Computer Society 2014, 8353–8358. DOI: 10.1109/ChiCC.2014.6896401.
  • [12] Farrokhsiar M., Najjaran H., “Unscented model predictive control of chance constrained nonlinear systems”, Adv. Robot., vol. 28, no. 4, 2014, 257–267. DOI: 10.1080/01691864.2013.867815.
  • [13] Garcia O. et al., “Design and simulation for path tracking control of a commercial vehicle using MPC”. In: Branco K.C. et al. (eds.), SBR-LARS Robotics Symposium and Robocontrol (SBR LARS Robocontrol), 2014 Joint Conference on Robotics, 2015, ISBN 9781479967117, 61–66. DOI: 10.1109/SBR.LARS.Robocontrol.2014.23.
  • [14] Ghasemi M. et al., “Finite-time tracking using sliding mode control”, J. Frankl. Inst., vol. 351, no. 5, 2014, 2966–2990. DOI: 10.1016/j.jfranklin.2014.02.001.
  • [15] González R. et al., “Robust tube-based predictive control for mobile robots in off-road conditions”, Robot. Auton. Syst., vol. 59, no. 10, 2011, 711–726.DOI: 10.1016/j.robot.2011.05.006.
  • [16] Guillet A. et al., “Off-road path tracking of a fleet of WMR with adaptive and predictive control”. In: IEEE International Conference on Intelligent Robots and Systems, 2013, 2855–2861. DOI: 10.1109/IROS.2013.6696760.
  • [17] Hach O. et al., “Avoiding steering actuator saturation in off-road mobile robot path tracking via predictive velocity controls”. In: IEEE International Conference on Intelligent Robots and Systems, 2011, 4072–4077. DOI: 10.1109/IROS.2011.6095007.
  • [18] Hedjar R. et al., “Approximated nonlinear predictive control for trajectory tracking of a wheeled mobile robot”. In: First International Conference on Robot, Vision and Signal Processing, RVSP 2011, 296–299. DOI: 10.1109/RVSP.2011.21.
  • [19] Heonyoung L. et al., “Nonlinear model predictive controller design with obstacle avoidance for a mobile robot”. In: 2008 IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications, MESA 2008, 494–499.
  • [20] Kanjanawanishkul K., Coordinated Path Following Control and Formation Control of Mobile Robots. PhD Thesis. Universität Tübingen 2010.
  • [21] Kanjanawanishkul K., “MPC-Based path following control of an omnidirectional mobile robot with consideration of robot constraints”, Adv. Electr. Electron. Eng., vol. 13, no. 1, 2015. DOI: 10.15598/aeee.v13i1.1228.
  • [22] Kanjanawanishkul K. et al., “Path following with an optimal forward velocity for a mobile robot”. In: IFAC Proceedings Volumes (IFAC-PapersOnline), 2010, 19–24.
  • [23] Kasprzyczak L. et al., “Robot for monitoring hazardous environments as a mechatronic product”, Journal of Automation, Mobile Robotics, and Intelligent Syststems, vol. 6, no. 4, 2012, 57–64.
  • [24] Klančar G., Škrjanc I., “Predictive trajectory tracking control for mobile robots”. In: Proceedings of EPEPEMC 2006: 12th International Power Electronics and Motion Control Conference, 2007, 373–378.DOI: 10.1109/EPEPEMC.2006.283188.
  • [25] Kozlowski, K., Pazderski, D., “Practical stabilization of a skid-steering mobile robot-A kinematicbased approach”. In: Proc. IEEE 3rd Int. Conf. on Mechatronics, 2006, 519–524. DOI: 10.1109/ICMECH.2006.252581.
  • [26] Lee J.-H., Yoo W.-S., “An improved model-based predictive control of vehicle trajectory by using nonlinear function”, J. Mech. Sci. Technol., vol. 23, no. 4, 2009, 918–922. DOI: 10.1007/s12206-009-0312-9.
  • [27] Lenain R., Thuilot B., “Mobile robot control on uneven and slippery ground: An adaptive approach based on a multi-model observer”. In: IEEE International Conference on Intelligent Robots and Systems, 2012, 1141–1148. DOI: 10.1109/IROS.2012.6385533.
  • [28] Li R. et al., “Nonlinear model predictive control for WMR with input constraint”. In: Processing of 2014 International Conference on Multisensor Fusion and Information Integration for Intelligent Systems, MFI 2014. DOI: 10.1109/MFI.2014.6997679.
  • [29] Li X. et al., “Nonlinear model predictive control of an omnidirectional mobile robot”. In: Intelligent Autonomous Systems 10, IAS 2008, 92–99 .
  • [30] Lucet E. et al., “Dynamic path tracking control of a vehicle on slippery terrain”, Control Eng. Pract., vol. 42, 2015, 60–73. DOI: 10.1016/j.conengprac.2015.05.008.
  • [31] Ma M.-M. et al., “Tracking control and stabilization of wheeled mobile robots by nonlinear model predictive control”. In: Chinese Control Conference, CCC, 2012, 4056–4061.
  • [32] Maurović I. et al., “Explicit model predictive control for trajectory tracking with mobile robots”. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2011, 712–717. DOI:10.1109/AIM.2011.6027140.
  • [33] Nagata A. et al., “Model predictive obstacle avoidance control for omni-directional mobile robots based on fuzzy potential method”. In: 2014 European Control Conference, 352–357. DOI:10.1109/ECC.2014.6862356.
  • [34] Nascimento T.P. et al., “Nonlinear Model Predictive Formation Control: An Iterative Weighted Tuning Approach”, Journal of Intelligent & Robotic Systems, vol. 80, no. 3–4, 2015, 441–454. DOI: 10.1007/s10846-015-0183-5.
  • [35] Pacheco L. et al., “Local model predictive control experiences with differential driven wheeled mobile robots”. In: Proceedings of 2008 IEEE International Conference on Automation, Quality and Testing, Robotics, AQTR 2008 –THETA 16th Edition, 377–382. DOI: 10.1109/AQTR.2008.4588858.
  • [36] Panathula C.B. et al., “Model predictive traction control for robots on slippery 3D terrains”. In: Proceedings of the American Control Conference, 2012, 4257–4262. DOI: 10.1109/ACC.2012.6315090.
  • [37] Tatjewski P., Advanced control of industrial processes: structures and algorithms, Springer Science & Business Media 2007.
  • [38] Teatro T.A.V. et al., “Nonlinear model predictive control for omnidirectional robot motion planning and tracking with avoidance of moving obstacles”, Can. J. Electr. Comput. Eng., vol. 37, no. 3, 2014, 151–156. DOI: 10.1109/CJECE.2014.2328973.
  • [39] Trojnacki M., “Dynamics model of a fourwheeled mobile robot for control applications – a three-case study”. In: Intelligent Systems’ 2014, chapter 10, 2015, 99–116. DOI:10.1007/978-3-319-11310-4_10.
  • [40] Tsoeu M.S., Esmail M., “Unconstrained MPC and PID evaluation for motion profile tracking applications”. In: IEEE AFRICON Conference, 2011.DOI: 10.1109/AFRCON.2011.6072037.
  • [41] Wang Y. et al., “A model predictive control strategy for path-tracking of autonomous mobile robot using electromagnetism-like mechanism”. In: Proceedings – International Conference on Electrical and Control Engineering, ICECE 2010, 96–100.
  • [42] Xie F., Fierro, R., “First-state contractive model predictive control of nonholonomic mobile robots”. In: Proceedings of the American Control Conference, 2008, 3494–3499.
  • [43] Yang Y. et al., Predictive Control Strategy Based on Extreme Learning Machine for Path-Tracking of Autonomous Mobile Robot. Intell. Autom. Soft Comput. 21, 1, 2015, 1–19.
  • [44] Yu S. et al., “Nonlinear model predictive control for path following problems”, Int. J. Robust Nonlinear Control., vol. 25, no. 8, 2015, 1168–1182. DOI:10.1002/rnc.3133.
  • [45] Zarghami M. et al., “Fast and precise positioning of wheeled Omni-directional robot with input delay using model-based predictive control”. In: Xu S. and Zhao Q. (eds.) Proceedings of the 33rd Chinese Control Conference, CCC 2014, 7800–7804. DOI:10.1109/ChiCC.2014.6896302.
  • [46] Zarghami M. et al., “Model-based predictive control of wheeled omni-directional robots considering nonlinear dynamical constraints and input delay”. In: 2014 13th International Conference on Control Automation Robotics and Vision, ICARCV 2014, 1379–1385. DOI: 10.1109/ICARCV.2014.7064517.
  • [47] Mobile robots for counter-terrorism (PIAP),http://www.antiterrorism.eu.
  • [48] SPARC Multi Annual Roadmap For Robotics in Europe Horizon 2020 Call ICT – 2016 (ICT - 25 &ICT - 26), http://sparc-robotics.eu
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-500d8121-3587-4ee9-9800-7ddc3626b8c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.