PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Oxidative decomposition of methanol in a vibroacoustic fluidized bed of Ag-coated cenosphere core-shell catalyst

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents results of a study of oxidative decomposition of methanol in a fluidized bed of silver catalyst. The process of methanol oxidation was carried out on Ag-coated cenospheres core-shell catalyst. The catalyst was obtained by precipitation of silver from methanolic solution of silver nitrate on cenospheres. Cenospheres are lightweight, inert, hollow spheres, which can be easily introduced into a fluidized bed. Application of the catalyst in a form of fluidized bed should ensure good temperature equalization which is very important at low temperatures due to the possibility of generation of formaldehyde. It turned out that local hot points occur in that kind of a catalyst (in the form of a fluidized bed but with very low density), thus use of additional acoustic wave is necessary to ensure good control over the temperature of the process. The products of the process of methanol oxidation were monitored on-line by Fourier transform infrared spectroscopy (FTIR). The catalyst has proven to be highly active in the oxidative decomposition of methanol. Full of methanol conversion in reaction of complete oxidation was achieved at 350°C.
Rocznik
Strony
71--75
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • Cracow University of Technology, Department of Inorganic Chemistry and Technology, ul. Warszawska 24, 31-155 Cracow, Poland
autor
  • Cracow University of Technology, Department of Inorganic Chemistry and Technology, ul. Warszawska 24, 31-155 Cracow, Poland
autor
  • Cracow University of Technology, Department of Inorganic Chemistry and Technology, ul. Warszawska 24, 31-155 Cracow, Poland
Bibliografia
  • 1. World Health Organization. (2016). Air Quality. Data and statistics. http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/data-and-statistics, access on date 2016-04-21.
  • 2. Samet, J.M. & Cohen, A.J. (1999). Air pollution and lung cancer. In: Holgate S.T., Samet J.M., Koren, H.S., Maynard, R.L,. eds. Air Pollution and Health. San Diego, CA: Academic Press, 841–864.
  • 3. Jedrychowski, W., Becher, H., Wahrendorf, J. & Basa-Cierpialek, Z. (1990). A case-control study of lung cancer with special reference to the effect of air pollution in Poland. J. Epidemiol Com. Health, 44, 114–120. DOI: 10.1136/jech.44.2.114.
  • 4. Vena, J.E. (1982). Air pollution as a risk factor in lung cancer. Am. J. Epidemiol. 116, 42–56.
  • 5. Directive 2004/42/CE of the European Parliament and of the Council of 21 April 2004 on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain paints and varnishes and vehicle refinishing products and amending Directive 1999/13/EC http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32004L0042, access on date 2016-04-21.
  • 6. Sahu, L.K., Yadav, R. & Pal, D. (2016). Source identification of VOCs at an urban site of western India: Effect of marathon events and anthropogenic emissions, J. Geophys. Res. Atmos., 121(5) 2416–2433. DOI: 10.1002/2015JD024454.
  • 7. Sahu, L.K. & Saxena, P. (2015). High time and mass resolved PTR-TOF-MS measurements of VOCs at an urban site of India during winter: role of anthropogenic, biomass burning, biogenic and photochemical sources. Atmos. Res., 164, 84–94. DOI: 10.1016/j.atmosres.2015.04.021.
  • 8. Kołodziej, A., Łojewska, J. & Kleszcz, T. (2007). Structured catalytic reactor for VOC combustion. Pol. J. Chem. Technol. 9(1), 10–14. DOI: 10.2478/v10026-007-0004-0.
  • 9. The National Centre for Emissions Management (KOBiZE)(in Polish: Krajowy Ośrodek Bilansowania i Zarządzania Emisjami, (2012). Material for the regulation and the requirements for balancing emissions of non-methane Volatile Organic Compounds (in Polish: Materiał dotyczący regulacji oraz wymagań w zakresie bilansowania emisji Niemetanowych Lotnych Związków Organicznych (NMLZO) ), https://krajowabaza.kobize.pl/docs/NMLZO-21-12-2012.pdf, access on date 2016-04-21.
  • 10. Cheng, W.H. & Kung, H.H. (1994). Methanol Production and Use. New York, Marcel Dekker INC.
  • 11. Reuss, G., Disteldorf, W., Gamer, A.O., Hilt, A. (2000). Formaldehyde, Ullmann’s Encyclopedia of Industrial Chemistry. DOI: 10.1002/14356007.a11_619.
  • 12 Sigma-Aldrich, (2016). Safety Data Sheet of Formaldehyde. http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=PL&language=pl&productNumber=252549&brand=SIAL, access on date 2016-04-21.
  • 13. Parus, W.J. & Paterkowski, W. (2009). Catalytic oxidation of organic pollutants. Pol. J. Chem. Technol. 11(4) 30–37. DOI: 10.2478/v10026-009-0040-z.
  • 14. Lee, P.F., Matsui, H., Xu, D.W. & Wang, N.S. (2013). Thermal Decomposition and Oxidation of CH3OH. J. Phys. Chem. A, 117, 525−534. DOI: 10.1021/jp309745p.
  • 15. Tsou, J., Magnoux, P., Guisnet M., Órfao, J.J.M. & Figueiredo, J.L. (2005). Catalytic oxidation of volatile organic compounds. Oxidation of methyl-isobutyl-ketone over Pt/zeolite catalysts. Appl Catal B Environ 57, 117–123. DOI: 10.1016/j.apcatb.2004.10.013.
  • 16. Shimoda, N., Umehara, S., Kasahara, M., Hongo, T., Yamazaki, A. & Satokawa, S. (2015). Methanol oxidative decomposition over zirconia supported silver catalyst and its reaction mechanism. Appl. Catal. Gen. 507, 56–64. DOI: 10.1016/j.apcata.2015.09.017.
  • 17. Borasio, M., Rodrıguez de la Fuente O., Rupprechter, G. & Freund H.J. (2005). In Situ Studies of Methanol Decomposition and Oxidation on Pd(111) by PM-IRAS and XPS Spectroscopy. J. Phys. Chem. B, 109(38), 17791–17794. DOI: 10.1021/jp053855c.
  • 18. Waterhouse, G.I.N., Bowmaker, G.A. & Metson, J.B. (2004). Mechanism and active sites for the partial oxidation of methanol to formaldehyde over an electrolytic silver catalyst, Appl. Catal. Gen. 265(1), 85–101. DOI: 10.1016/j.apcata.2004.01.016.
  • 19. Anshits, N.N., Mikhailova O.A., Salanov A.N. & Anshits A.G. (2010). Chemical composition and structure of the shell of fly ash non-perforated cenospheres produced from the combustion of the Kuznetsk coal (Russia). Fuel 89(8), 1849–1862. DOI: 10.1016/j.fuel.2010.03.049.
  • 20. Bradło, D., Żukowski, W., Czupryński, P. & Witkowski, K. (2014). Acquisition and choice of method for fractionation of cenospheres from fly ashes. Przem. Chem. 93(7), 1114–1117. DOI: 10.12916/przemchem.2014.1114. (in Polish)
  • 21. Kruger, R.A. (1996). The Use of Cenospheres in Refractories. Energeia, Center Appl. Ener. Res. 7, 4. http://www.caer.uky.edu/energeia/pdf/vol7-4.pdf
  • 22. Elpologistyka Sp. z o.o., Raport z badań mikrosfery, http://www.elpologistyka.pl/wp-content/uploads/2015/11/Raport-z-badan-mikrosfery1.pdf, access on date 2016-04-21.
  • 23. Geldart, D. (1973). Types of Gas Fluidization. Pow. Tech., 7, 285–292. DOI: 10.1016/0032-5910(73)80037-3.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-500be46f-89c7-4397-99ce-da7c01d66b4b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.