PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Additive and hybrid technologies for products manufacturing using powders of metals, their alloys and ceramics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The paper is a comprehensive review of the literature on additive and hybrid technologies for products manufacturing using powders of metals, their alloys and ceramics. Design/methodology/approach: Extensive literature studies on conventional powder engineering technologies have been carried out. By using knowledge engineering methods, development perspectives of individual technologies were indicated. Findings: The additive and hybrid technologies for products manufacturing using powders of metals, their alloys and ceramics as the advanced digital production (ADP) technologies are located in the two-quarters of the dendrological matrix of technologies "wide-stretching oak" and "rooted dwarf mountain pine" respectively. It proves their highest possible potential and attractiveness, as well as their fully exploited attractiveness or substantial development opportunities in this respect. Originality/value: According to augmented holistic Industry 4.0 model, many materials processing technologies and among them additive and hybrid technologies for products manufacturing using powders of metals, their alloys and ceramics are becoming very important among product manufacturing technologies. They are an essential part not only of powder engineering but also of the manufacturing development according to the concept of Industry 4.0.
Rocznik
Strony
59--85
Opis fizyczny
Bibliogr. 225 poz.
Twórcy
  • Medical and Dental Engineering Center for Research, Design and Production ASKLEPIOS, ul. Królowej Bony 13D, 44-100 Gliwice, Poland
  • Medical and Dental Engineering Center for Research, Design and Production ASKLEPIOS, ul. Królowej Bony 13D, 44-100 Gliwice, Poland
  • Department of Mechanical Engineering, University of Zielona Góra, ul. Prof. Z. Szafrana 4, 65-516 Zielona Góra, Poland
Bibliografia
  • [1] L.A. Dobrzański, L.B. Dobrzański, A.D. Dobrzańska- Danikiewicz, M. Kraszewska, Manufacturing powders of metals, their alloys and ceramics and the importance of conventional and additive technologies for products manufacturing in Industry 4.0 stage, Archives of Materials Science and Engineering 102/1 (2020) 13-41. DOI: https://doi.org/10.5604/01.3001.0014.1452
  • [2] L.A. Dobrzański, L.B. Dobrzański, A.D. Dobrzańska- Danikiewicz, Overview of conventional technologies using the powders of metals, their alloys and ceramics in Industry 4.0 stage, Journal of Achievements in Materials and Manufacturing Engineering 98/2 (2020) 56-85. DOI: https://doi.org/10.5604/01.3001.0014.1481
  • [3] L.A. Dobrzański, L.B. Dobrzański, A.D. Dobrzańska- Danikiewicz, Manufacturing technologies thick-layer coatings on various substrates and manufacturing gradient materials using powders of metals, their alloys and ceramics, Journal of Achievements in Materials and Manufacturing Engineering 99/1 (2020) 14-41. DOI: https://doi.org/10.5604/01.3001.0014.1598
  • [4] L.A. Dobrzański, Fundamentals of materials science and metal science. Engineering materials with the basics of material design, WNT, Warsaw, Poland, 2002 (in Polish).
  • [5] L.A. Dobrzański, Metal engineering materials, WNT, Warsaw, Poland, 2004 (in Polish).
  • [6] L.A. Dobrzański, Metalls and alloys, International OCSCO World Press, Gliwice, Poland, 2017 (in Polish).
  • [7] L.A. Dobrzański, Significance of materials science for the future development of societies, Journal of Mate¬rials Processing Technology 175/1-3 (2006) 133-148. DOI: https://doi.org/10.1016/ijmatprotec.2005.04.003
  • [8] L.A. Dobrzański, Fundamentals of materials science, Silesian University of Technology Publishing House, Gliwice, Poland, 2012 (in Polish).
  • [9] L.A. Dobrzański, Fundamentals of material design methodology, Silesian University of Technology Publishing House, Gliwice, Poland, 2009 (in Polish).
  • [10] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Materials surface engineering: a compendium of knowledge and an academic handbook, International OCSCO World Press, Gliwice, Poland, 2018 (in Polish).
  • [11] L.A. Dobrzański, Materials Design as an Important Element of Advanced Products’ Engineering Design and Manufacturing, Proceedings of the 17th International Congress of Mechanical Engineering, Associaęao Brasileira de Ciencias Mecanicas, Sao Paulo: 2003 (CD-ROM).
  • [12] L.A. Dobrzański, Contemporary developmental trends in materials science and engineering, Materials Engineering 24/6 (2003) 271-278 (in Polish).
  • [13] L.A. Dobrzański, Significance of materials science and engineering for advances in design and manufacturing processes, Computer Integrated Manufacturing, in: B. Skołud, D. Krenczyk (Eds.), Advanced Design and Management, WNT, Warsaw, Poland, 2003, 128-140.
  • [14] L.A. Dobrzański, The importance of developing material science and materials engineering for improving the quality of life in contemporary societies, Wisnyk Technologicznoho Uniwersytetu Podilla, Chmielnickij, Ukraina l/6 (2003) 34-47 (in Polish).
  • [15] L.A. Dobrzański, Heat treatment as the fundamental technological process of formation of structure and properties of the metallic engineering materials, Proceedings of the 8th Seminar of the International Federation for Heat Treatment and Surface Engineering IFHTSE 2001, Dubrovnik-Cavtat, Croatia, 2001, 1-12.
  • [16] L.A. Dobrzański, invited lecture: Significance of Materials Science for Advances in Products Design and Manufacturing, General Assembly of the International Academy for Production Engineering (CIRP), Cracow, Poland, 2004.
  • [17] L.A. Dobrzański, Computational materials science as a method of design of contemporary engineering materials and products, 10th Seminary of Research and Education Programs in Materials Engineering, Myczkowce, Poland, 2004, 55-88 (in Polish).
  • [18] M. Ruehle, H. Dosch, E.J. Mittemeijer, M.H. Van de Voorde (Eds.), European White Book on Fundamental Research in Materials Science, Max-Planck-Institute fuer Metallforschung, Stuttgart, 2001.
  • [19] G.E. Dieter (Ed.), ASM Handbook - Materials Selection and Design, vol. 20, ASM International, Metals Park, 1997.
  • [20] A.D. Dobrzańska-Danikiewicz, The State of the Art Analysis and Methodological assumptions of Evaluation and Development Prediction for Materials Surface Technologies, Journal of Achievements in Materials and Manufacturing Engineering 49/2 (2011) 121-141.
  • [21] M.F. Ashby, Materials Selection in Mechanical Design, Pergamon Press, Oxford/New York/Seoul/Tokyo, 1992.
  • [22] N.A. Waterman, M.F. Ashby, The Materials Selector, Volumes 1-3, Chapman & Hall, London/Weinheim/ New York/Tokyo/Melbourne/Madras, 1997.
  • [23] M.F. Ashby, Materials Selection in Mechanical Design, Butterworth-Heinemann, Burlington, 2011.
  • [24] M.F. Ashby, D.R.H. Jones, Engineering Materials 1: An Introduction to Properties, Applications and Design, Butterworth-Heinemann, Waltham, 2012.
  • [25] M.F. Ashby, D.R.H. Jones, Engineering Materials 2: An Introduction to Microstructures and Processing, Butterworth-Heinemann, Waltham, 2013.
  • [26] E. Oztemel, S. Gursev, Literature review of Industry 4.0 and related technologies, Journal of Intelligent Manufacturing 31 (2020) 127-182. DOI: https://doi.org/10.1007/s10845-018-1433-8
  • [27] L.A. Dobrzański, invited lecture: Structural Phenomena Accompanying the Production of Composite and Nanocomposite Materials Using Selected Technologies, The XXII Physical Metallurgy and Materials Science Conference: Advanced Materials and Technologies 2019, Bukowina Tatrzańska, Poland, 2019.
  • [28] L.A. Dobrzański, invited lecture: Role of Materials Design in Maintenance Engineering in the Context of Industry 4.0 Idea, International Maintenance Technologies Congress and Exhibition, Denizli, Turkey, 2019.
  • [29] L.A. Dobrzański, invited lecture: The role of material engineering in stage 4.0 of the technological revolution, XXIV Seminar of the Polish Materials Science Society, Jachranka, Poland, 2019 (in Polish).
  • [30] L.A. Dobrzański, invited lecture: The importance of materials engineering in stage 4.0 of the technological revolution, Institute of Fundamental Technological Research PAS, Warsaw, Poland, 2019 (in Polish).
  • [31] L.A. Dobrzański, invited lecture: Stage 4.0 of the Technological Revolution in the Context of the Devel- opment of Engineering Materials, Lviv Polytechnic National University, Lviv, Ukraine, 2019.
  • [32] R. Jose, S. Ramakrishna, Materials 4.0: Materials Big Data Enabled Materials Discovery, Applied Materials Today 10 (2018) 127-132. DOI: https://doi.org/10.1016/j.apmt.2017.12.015
  • [33] UNO General Assembly, 70/1. Transforming our world: the 2030 Agenda for Sustainable Development, Resolution adopted by the General Assembly on 25 September 2015. Available at: https://www.un.org/ga/search/view doc.asp?symbol= A/RES/70/1&Lang=E
  • [34] L.A. Dobrzański, L.B. Dobrzański, Approach to the design and manufacturing of prosthetic dental restorations according to the rules of the Industry 4.0 industrial revolution stage, MPC (2020) (in print).
  • [35] L.A. Dobrzański, L.B. Dobrzański, Dentistry 4.0 Concept in the Design and Manufacturing of Prosthetic Dental Restorations, Processes 8 (2020) 525. DOI: https://doi.org/10.3390/pr8050525
  • [36] H. Kagermann, W. Wahlster, J. Helbig, Recommen- dations for Implementing the Strategic Initiative Industrie 4.0: Final Report of the Industrie 4.0 Working Group, Federal Ministry of Education and Research, Bonn, Germany, 2013.
  • [37] H. Kagermann, Industry 4.0 benefits, in: Industry 4.0 in production, automation and logistics, Springer Fachmedien Wiesbaden, Wiesbaden, Germany, 2014, 603-614 (in German).
  • [38] M. Hermann, T. Pentek, B. Otto, Design Principles for Industrie 4.0 Scenarios: A Literature Review, Technische Universitat Dortmund, Dortmund, Germany, 2015.
  • [39] M. Ruhmann, M. Lorenz, P. Gerbert, M. Waldner, J. Justus, P. Engel, M. Harnisch, Industry 4.0: The Future of Productivity and Growth in Manufacturing Industries Boston Consulting Group, Boston, MA, 2015. Available at: http//webarchive.org/web/20190711.124617/https7/w ww.zvw.de/media.media.72e472fb-1698-4a15-8858- 344351c8902f.original.pdf
  • [40] European Commision, Commission sets out path to digitise European industry, Press release on 19 April 2016, Brussels. Available at: https://ec.europa.eu/commission/presscorner/detail/en/ IP 16 1407
  • [41] Implementing the Digitising European Industry actions, Digital Innovation Hubs on Smart Factories in new EU Member States, the project managed by the EC to support the European Parliament, 2017. Available at: https://ec.europa.eu/futurium/en/implementing- digitising-european-industry-actions/digital- innovation-hubs-smart-factories-new-eu
  • [42] L.A. Dobrzański, Effect of Heat and Surface Treatment on the Structure and Properties of the Mg-Al-Zn-Mn Casting Alloys, in: L.A. Dobrzański, G.E. Totten, M. Bamberger (Eds.), Magnesium and Its Alloys: Technology and Applications, CRC Press, Boca Raton, FL, 2019, 91-202.
  • [43] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Why are Carbon-Based Materials Important in Civilization Progress and Especially in the Industry 4.0 Stage of the Industrial Revolution?, Materials Performance and Characterization 8/3 (2019) 337-370. DOI: https://doi.org/ 910.1520/MPC20190145
  • [44] J. Wan, H. Yan, Q. Liu, K. Zhou, R. Lu, D. Li, Enabling Cyber-Physical Systems with Machine-to-Machine Technologies, International Journal of Ad Hoc and Ubiquitous Computing 13/3-4 (2013) 187-196. DOI: https://doi.org/10.1504/IJAHUC.2013.055454
  • [45] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of Things (IoT): A Vision, Architectural Elements, and Future Directions, Future Generation Computer Systems 29/7 (2013) 1645-1660. DOI: https://doi.org/10.1016/j.future.2013.01.010
  • [46] S.V. Buer, J.O. Strandhagen, T.S. Chan, The link between Industry 4.0 and lean manufacturing: mapping current research and establishing a research agenda, International Journal of Production Research 56/8 (2018) 2924-2940. DOI: https://doi.org/10.1080/00207543.2018.1442945
  • [47] X. Qiu, H. Luo, G. Xu, R.Y. Zhong, G.Q. Huang, Physical Assets and Service Sharing for IoT-enabled Supply Hub in Industrial Park (SHIP), International Journal of Production Economics 159 (2015) 4-15. DOI: https://doi.org/10.1016/j.iipe.2014.09.001
  • [48] J. Posada, C. Toro, I. Barandiaran, D. Oyarzun, D. Stricker, R. de Amicis, E.B. Pinto, P. Eisert, J. Dollner, I. Vallarino, Visual Computing as a Key Enabling Technology for Industrie 4.0 and Industrial Internet, IEEE Computer Graphics and Applications 35/2 (2015) 26-40. DOI: https://doi.org/10.1109/MCG.2015.45
  • [49] M.U. Farooq, M. Waseem, S. Mazhar, A. Khairi, T. Kamal, A Review on Internet of Things (IoT), International Journal of Computer Applications 113/1 (2015) 1-7. DOI: https://doi.org/10.5120/19787-1571
  • [50] J. Lee, B. Bagheri, H.-A. Kao, A cyber-physical systems architecture for industry 4.0-based manufacturing systems, Manufacturing Letters 3 (2015) 18-23. DOI: https://doi.org/10.1016Zi.mfgiet.2014.12.001
  • [51] F. Almada-Lobo, The Industry 4.0 Revolution and the Future of Manufacturing Execution Systems (MES), Journal of Innovation Management 3/4 (2015) 16-21. DOI: https://doi.org/10.24840/2183-0606 003.004 0003
  • [52] K. Sipsas, K. Alexopoulos, V. Xanthakis, G. Chryssolouris, Collaborative Maintenance in Flow- Line Manufacturing Environments: An Industry 4.0 Approach, Procedia CIRP 55 (2016) 236-241. DOI: https://doi.org/10.1016/i.procir.2016.09.013
  • [53] R. Gerli, I. Secciani, F. Sozio, A. Rossi, E. Weber, G. Lorenzini, Absence of lymphatic vessels in human dental pulp: a morphological study, European Journal of Oral Sciences 118/2 (2010) 110-117. DOI: https://doi.org/10.1111/j.1600-0722.2010.00717.x
  • [54] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Applications of Laser Processing of Materials in Surface Engineering in the Industry 4.0 Stage of the Industrial Revolution, Materials Performance and Characterization 8/6 (2019) 1091-1129. DOI: https://doi.org/10.1520/MPC20190203
  • [55] R.Y. Zhong, Z. Li, L.Y. Pang, Y. Pan, T. Qu, G.Q. Huang, RFID-Enabled Real-Time Advanced Planning and Scheduling ShellforProduction Decision Making, International Journal of Computer Integrated Manufacturing 26/7 (2013) 649-662. DOI: https://doi.org/10.1080/0951192X.2012.749532
  • [56] R. Moreno-Vozmediano, R.S. Montero, I.M. Llorente, Key Challenges in Cloud Computing: Enabling the Future Internet of Services, IEEE Internet Computing 17/4 (2013) 18-25. DOI: https://doi.org/10.1109/MIC.2012.69
  • [57] P. Gerbert, M. Lorenz, M. RuBmann, M. Waldner, J. Justus, P. Engel, M. Harnisch, Industry 4.0: The Future of Productivity and Growth in Manufacturing Industries, Boston Consulting Group, Boston, MA, 2015. Available at: http://web.archive.org/web/20190711125458/https://w ww.bcg.com/publications/2015/engineered products project business industry 4 future productivity gro wth manufacturing industries.aspx
  • [58] L. Monostori, B. Kadar, T. Bauernhansl, S. Kondoh, S. Kumara, G. Reinhart, O. Sauer, G. Schuh, W. Sihn, K. Ueda, Cyber-Physical Systems in Manufacturing, CIRP Annals 65/2 (2016) 621-641. DOI: https://doi.org/10.1016/j.cirp.2016.06.005
  • [59] D. Georgakopoulos, P.P. Jayaraman, M. Fazia, M. Villari, R. Ranjan, Internet of Things and Edge Cloud Computing Roadmap for Manufacturing, IEEE Cloud Computing 3/4 (2016) 66-73. DOI: https://doi.org/10.1109/MCC.2016.91
  • [60] R.Y. Zhong, S.T. Newman, G.Q. Huang, S. Lan, Big Data for Supply Chain Management in the Service and Manufacturing Sectors: Challenges, Opportunities, and Future Perspectives, Computers & Industrial Engineering 101 (2016) 572-591. DOI: https://doi.org/10.1016/j.cie.2016.07.013
  • [61] P.J. Mosterman, J. Zander, Industry 4.0 as a Cyber- Physical System Study, Software & Systems Modeling 15/1 (2016) 17-29. DOI: https://doi.org/10.1007/s10270- 015-0493-x
  • [62] R. Harrison, D. Vera, B. Ahmad, Engineering Methods and Tools for Cyber-Physical Automation Systems, Proceedings of the IEEE 104/5 (2016) 973-985. DOI: https://doi.org/10.1109/JPROC.2015.2510665
  • [63] K.C. Kolan, N.D. Doiphode, M.C. Leu, Selective laser sintering and freeze extrusion fabrication of scaffolds for bone repair using 13-93 bioactive glass: a comparison, Proceedings of the Solid Freeform Fabrication Symposium, The University of Texas at Austin, Austin, 2010.
  • [64] K.C. Kolan, M.C. Leu, G.E. Hilmas, R.F. Brown, M. Velez, Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering, Biofabrication 3/2 (2011) 025004. DOI: https://doi.org/10.1088/1758-5082/3/2/025004
  • [65] C. Leiggener, E. Messo, A. Thor, H.F. Zeilhofer, J.M. Hirsch, A selective laser sintering guide for transferring a virtual plan to real time surgery in composite mandibular reconstruction with free fibula osseous flaps, International Journal of Oral and Maxillofacial Surgery 384/2 (2009) 187-194. DOI: https://doi.org/10.1016/j.ijom.2008.11.026
  • [66] K. Oyama, L.F.S. Ditzel Filho, J. Muto, D.G. de Souza, R. Gun, B.A. Otto, R.L. Carrau, D.M. Prevedello, Endoscopic endonasal cranial base surgery simulation using an artificial cranial base model created by selective laser sintering, Neurosurgical Review 38 (2015) 171-178. DOI: https://doi.org/10.1007/s10143- 014-0580-4
  • [67] D.T. Pham, S. Dimov, F. Lacan, Selective laser sintering: applications and technological capabilities, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 213/5 (1999) 435-449. DOI: https://doi.org/10.1243%2F0954405991516912
  • [68] G.V. Salmoria, E.A. Fancello, C.R.M. Roesler, F. Dabbas, Functional graded scaffold of HDPE/HA prepared by selective laser sintering: microstructure and mechanical properties, International Journal of Advanced Manu¬facturing Technology 65/9 (2013) 1529-1534. DOI: https://doi.org/10.1007/s00170-012-4277-y
  • [69] I.V. Shishkovsky, L.T. Volova, M.V. Kuznetsov, Y.G. Morozov, I.P. Parkind, Porous biocompatible implants and tissue scaffolds synthesized by selective laser sintering from Ti and NiTi, Journal of Materials Chemistry 18 (2008) 1309-1317. DOI: https://doi.org/10.1039/B715313A
  • [70] K.H. Tan, C.K. Chua, K.F. Leong, C.M. Cheah, P. Cheang, M.S. Abu Bakar, S.W. Cha, Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends, Biomaterials 24/18 (2003) 3115-3123. DOI: https://doi.org/10.1016/S0142-9612(03)00131-5
  • [71] M. Wanibuchi, M. Ohtaki, T. Fukushima, A.H. Friedman, K. Houkin, Skull base training and education using an artificial skull model created by selective laser sintering, Acta Neurochirurgica 152 (2010): 1055-1060. DOI: https://doi.org/10.1007/s00701-010-0624-7
  • [72] J.M. Williams, A. Adewunmi, R.M. Schek, C.L. Flanagan, P.H. Krebsbach, S.E. Feinberg, S.J. Hollister, S. Das, Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering, Biomaterials 26/23 (2005) 4817-4827. DOI: https://doi.Org/10.W16/j.biomaterials.2004.11.057
  • [73] F. Xie, X. He, S. Cao, X. Qu, Structural and mechanical characteristics of porous 316L stainless steel fabricated by indirect selective laser sintering, Journal of Mate¬rials Processing Technology 213/6 (2013) 838-843. DOI: https://doi.org/10.1016/j.jmatprotec.2012.12.014
  • [74] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, T.G. Gaweł, L.B. Dobrzański, A. Achtelik- Franczak, Composite made using computer-aided laser methods for craniofacial implants and the method of producing it, Patent application P 411689 (in Polish).
  • [75] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, A. Achtelik-Franczak, L.B. Dobrzański, T.G. Gaweł, Implant-scaffold or prosthesis of anatomic elements of the stomatognathic system and the craniofacial, Patent No. PL229148 (in Polish).
  • [76] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, A. Achtelik-Franczak, L.B. Dobrzański, T.G. Gaweł, Bone scaffold implant, Patent No. PL 229149 (in Polish).
  • [77] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, A. Achtelik-Franczak, L.B. Dobrzański, T.G. Gaweł, Biological engineering composites for regenerative medicine, Patent application P 414723 (in Polish).
  • [78] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, A. Achtelik-Franczak, L.B. Dobrzański, M. Kremzer, A method for producing composite materials with a microporous skeletal reinforcement structure, Patent Application P 417552 (in Polish).
  • [79] T. Furumoto, A. Koizumi, M.R. Alkahari, R. Anayama, A. Hosokawa, R. Tanaka, T. Ueda, Permeability and strength of a porous metal structure fabricated by additive manufacturing, Journal of Materials Processing Technology 219 (2015) 10-16. DOI: https://doi.org/10.1016/jjmatprotec.2014.11.043
  • [80] J.P. Kruth, P. Mercelis, J.V. Vaerenbergh, L. Froyen, M. Rombouts, Binding mechanisms in selective laser sintering and selective laser melting, Rapid Prototyping Journal 11/1 (2005) 26-36. DOI: https://doi.org/10.1108/13552540510573365
  • [81] F. Abe, K. Osakada, M. Shiomi, K. Uematsu, M. Matsumoto, The manufacturing of hard tools from metallic powders by selective laser melting, Journal of Materials Processing Technology 111/1-3 (2001) 210-213. DOI: https://doi.org/10.1016/S0924-0136(01)00522-2
  • [82] J.P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, B. Lauwers, Selective laser melting of iron-based powder jet, Journal of Materials Processing Technology 149/1-3 (2004) 616-622. DOI: https://doi.org/10.1016/j.jmatprotec.2003.11.051115
  • [83] K. Osakada, M. Shiomi, Flexible manufacturing of metallic products by selective laser melting of powder, International Journal of Machine Tools and Manufacture 46/11 (2006) 1188-1193. DOI: https://doi.org/10.1016/j.ijmachtools.2006.01.024
  • [84] W. Xue, K.B. Vamsi, A. Bandyopadhyay, S. Bose, Processing and biocompatibility evaluation of laser processed porous titanium, Acta Biomateralia 3/6 (2007) 1007-1018. DOI: https://doi.org/10.1016/j.actbio.2007.05.009
  • [85] P.H. Warnke, T. Douglas, P. Wollny, E. Sherry, M. Steiner, S. Galonska, S.T. Becker, I.N. Springer, J. Wiltfang, S. Sivananthan, Rapid prototyping: Porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering, Tissue Engineering - Part C: Methods 15/2 (2009) 115-124. DOI: https://doi.org/10.1089/ten.tec.2008.0288
  • [86] A. Gasser, G. Backes, I. Kelbassa, A. Weisheit, K. Wissenbach, Laser additive manufacturing: laser metal deposition (LMD) and selective laser melting (SLM) in turbo-engine applications, Laser Technik Journal 7/2 (2010) 58-63. DOI: https://doi.org/10.1002/latj.201090029
  • [87] Y. Wang, Y. Shen, Z. Wang, J. Yang, N. Liu, W. Huang, Development of highly porous titanium scaffolds by selective laser melting, Materials Letters 64/6 (2010) 674-676. DOI: https://doi.org/10.10167j.matlet.2009.12.035
  • [88] W.H. Yu, S.L. Sing , C.K. Chua, C.N. Kuo, X.L. Tian, Particle-reinforced metal matrix nanocomposites fabricated by selective laser melting: A state of the art review, Progress in Materials Science 104 (2019) 330-379. DOI: https://doi.org/10.1016/j.pmatsci.2019.04.006
  • [89] W-m. Peng, Y-f. Liu, X-f. Jiang, X-t. Dong, J. Jun, D. A. Baur, J-j. Xu, H. Pan, X. Xu, Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications, Journal of Zhejiang University-Science B 20/8 (2019) 647-659. DOI: https://doi.org/10.1631/jzus.B1800622
  • [90] J. Zhang, B. Song, Q. Wei, D. Bourell, Y. Shi, A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends, Journal of Materials Science & Technology 35 (2019) 270-284. DOI: https://doi.org/10.1016/jjmst.2018.09.004
  • [91] L.A. Dobrzański, A. Achtelik-Franczak, Structure and properties of titanium skeletal microporous materials produced by the method of selective laser sintering for applications in implantology and regenerative medicine, in: L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz (Eds.), Microporous and solid metallic materials for medical and dental application, International OCSCO World Press, Gliwice, Poland, 2017, 186-244 (in Polish).
  • [92] R. Bibb, D. Thompson, J. Winder, Computed tomography characterisation of additive manufacturing materials, Medical Engineering & Physics 33/5 (2011) 590-596. DOI: https://doi.org/10.1016/j.medengphy.2010.12.015
  • [93] M. Cader, M. Trojnacki, Analysis of the possibilities of applying incremental technologies to manufacture components of mobile robots, Robotics Automation Measurements 2 (2013) 200-207 (in Polish).
  • [94] Y. Song, Y. Yan, R. Zhang, D. Xu, F. Wang, Manu-facturing of the die of an automobile deck part based on rapid prototyping and rapid tooling technology, Journal of Materials Processing Technology 120/1-3 (2002) 237-242. DOI: https://doi.org/10.1016/S0924- 0136(01)01165-7
  • [95] C.L. Thomas, T.M. Gaffney, S. Kaza, C.H. Lee, Rapid prototyping of large scale aerospace structures, Proceedings of IEEE Aerospace Applications Conference, vol. 4, IEEE, Aspen, CO, USA 1996, 219-230. DOI: https://doi.org/10.1109/AERO.1996.499663
  • [96] A. Contreras, V.H. Lopez, E. Bedolla, Mg/TiC composites manufactured by pressureless melt infiltration, Scripta Materialia 51/3 (2004) 249-253. DOI: https://doi.org/10.1016/j.scriptamat.2004.04.007
  • [97] A. Fukuda, M. Takemoto, T. Saito, S. Fujibayashi, M. Neo, D.K. Pattanayak, T. Matsushita, K. Sasaki, N. Nishida, T. Kokubo, T. Nakamura, Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting, Acta Biomaterialia 7/5 (2011) 2327-2336. DOI: https://doi.org/10.1016/j.actbio.2011.01.037
  • [98] L.A. Dobrzański, A. Drygała, M. Musztyfaga, P. Panek, Comparison of the structure and electrical properties of the front electrodes of solar cells fired in a band oven and selectively sintered by laser, Electronics: constructions, technologies, applications 52/4 (2011) 50-52.
  • [99] L.A. Dobrzański, M. Musztyfaga, A. Drygała, Selective laser sintering method of manufacturing front electrode of silicon solar cell, Journal of Achievements in Materials and Manufacturing Engineering 42/1-2 (2010) 111-119.
  • [100] D. Manestar, S. Maricić, D Komljenović, D. Miletić, A. Ruzić Barsić, E. Borović, Auricular epithesis, Laryngoscope 127/3 (2017) 574-576. DOI: https://doi.org/10.1002/lary.26113
  • [101] M. Klimek, The use of SLS technology in the implementation of permanent prosthetic restorations, Your Dental Review 12 (2012) 47-55.
  • [102] A. Mazzoli, Selective laser sintering in biomedical engineering, Medical and Biological Engineering and Computing 51 (2013) 245-256. DOI: https://doi.org/10.1007/s11517-012-1001-x
  • [103] L. Ciocca, M. Fantini, F. De Crescenzio, G. Corinaldesi, R. Scott, Direct metal laser sintering (DMLS) of a customized titanium mesh for prosthetically guided bone regeneration of atrophic maxillary arches, Medical and Biological Engineering and Computing 49 (2011) 1347-1352. DOI: https://doi.org/10.1007/s11517-011-0813-4
  • [104] J.W. Choi, M. Yamashita, J. Sakakibara, Y. Kaji, T. Oshika, R.B. Wicker, Combined micro and macro additive manufacturing of a swirling flow coaxial phacoemulsifier sleeve with internal micro-vanes, Biomedical Microdevices 12 (2010) 875-886. DOI: https://doi.org/10.1007/s10544-010-9442-1
  • [105] J.P. Li, P. Habibovic, M. van den Doel, C.E. Wilson, J.R. de Wijn, C.A. van Blitterswijk, K. de Groot, Bone ingrowth in porous titanium implants produced by 3D fiber deposition, Biomaterials 28/18 (2007) 2810-2820. DOI: https://doi.org/10.1016/j.biomaterials.2007.02.020
  • [106] E. Sachlos, J.T. Czernuszka, Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds, European Cells and Materials 5 (2003) 29-40. DOI: https://doi.org/10.22203/eCM.v005a03
  • [107] A. Bandyopadhyay, F. Espana, V.K. Balla, S. Bose, Y. Ohgami, N.M. Davies, Influence of porosity on mechanical properties and in vivo response of Ti6Al4 implants, Acta Biomaterialia 6/4 (2010) 1640-1648. DOI: https://doi.org/10.1016Zj.actbio.2009.11.011
  • [108] S. Eshraghi, S. Das, Mechanical and microstructural properties of polycaprolactone scaffolds with one- dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering, Acta Biomaterialia 6/7 (2010) 2467-2476. DOI: https://doi.org/10.1016/j.actbio.2010.02.002
  • [109] V. Karageorgiou, D. Kaplan, Porosity of 3D biomaterial scaffolds, Biomaterials 26/27 (2005) 5474-5491. DOI: https://doi.org/10.1016/j.biomaterials.2005.02.002
  • [110] M. Veiseh, D. Edmondson, Bone as an Open Cell Porous Material, ME 599K: Special Topics in Cellular Solids, 2003.
  • [111] K. Yoshida, Y. Saiki, Ch. Ohkubo, Improvement of drawability and fabrication possibility of dental implant screw made of pure titanium, Metallurgy - Metallurgical News 78/1 (2011) 153-156.
  • [112] A. Nouri, P.D. Hodgson, C. Wen, Biomimetic Porous Titanium Scaffolds for Orthopedic and Dental Applications, in: A. Mukherjee (Ed.), Biomimetics Learning from Nature, IntechOpen, London, UK, 2010, 415-450. DOI: https://doi.org/10.5772/8787
  • [113] D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals, Acta Materialia 117 (2016) 371-392. DOI: https://doi.org/10.1016/j.actamat.2016.07.019
  • [114] W.E. Frazier, Metal Additive Manufacturing: A Review, Journal of Materials Engineering and Performance 23 (2014) 1917-1928. DOI: https://doi.org/10.1007/s11665-014-0958-z
  • [115] Japan Business Federation, Society 5.0: Co-Creating the Future (Excerpt), Keidanren, 2018. Available at: https://www.keidanren.or.jp/en/policy/2018/095 outl ine.pdf
  • [116] Japan Business Federation, Toward Realization of the New Economy and Society (Outline), Keidanren, 2016. Available at: https://www.keidanren.or.jp/en/policy/2016/029 outl ine.pdf
  • [117] Japan Business Federation, Japan’s Initiatives- Society 5.0, Keidanren.
  • [118] Y. Harayama, Society 5.0: Aiming for a New Human- Centered Society, Hitachi Review 66/6 (2017) 8-13.
  • [119] Government of Japan Cabinet Office, Society 5.0, Cabinet Office, 2019. Available at: http://web.archive.org/web/20190710182953/
  • [120] https://www8.cao.go.jp/cstp/society5 0/index.html
  • [121] M. Fukuyama, Society 5.0: Aiming for a New Human-Centered Society, Japan SPOTLIGHT July/August (2018) 47-50.
  • [122] B.H. Lu, R.J. Bateman, K. Cheng, RFID Enabled Manufacturing: Fundamentals, Methodology and Applications, International Journal of Agile Systems and Management 1/1 (2006) 73-92. DOI: https://doi.org/10.1504/IJASM.2006.008860
  • [123] D. Giusto, A. Iera, G. Morabito, L. Atzori (Eds.), The Internet of Things, Springer, New York, NY, 2010.
  • [124] Q. Zhu, R. Wang, Q. Chen, Y. Liu, W. Qin, IOT Gateway: Bridging Wireless Sensor Networks in to Internet of Things, Proceedings of the 2010 IEEE/ IFIP International Conference on Embedded and Ubiquitous Computing, The Institute of Electrical and Electronics Engineers, Piscataway, 2010, 347-352.
  • [125] D.Z. Wu, M.J. Greer, D.W. Rosen, D. Schaefer, Cloud Manufacturing: Strategic Vision and State-of- the-Art, Journal of Manufacturing Systems 32/4 (2013) 564-579. DOI: https://doi.org/10.1016/j.jmsy.2013.04.008
  • [126] J. Lee, H.-A. Kao, S. Yang, Service Innovation and Smart Analytics for Industry 4.0 and Big Data Environment, Procedia CIRP 16 (2014) 3-8. DOI: https://doi.org/10.1016/j.procir.2014.02.001
  • [127] Z. Bi, L.D. Xu, C. Wang, Internet of Things for Enterprise Systems of Modern Manufacturing, IEEE Transactions on Industrial Informatics 10/2 (2014) 1537-1546. DOI: https://doi.org/10.1109/TII.2014.2300338
  • [128] M. Brettel, N. Friederichsen, M. Keller, M. Rosenberg, How Virtualization, Decentralization and Network Building Change the Manufacturing Landscape: An Industry 4.0 Perspective, International Journal of Mechanical, Aerospace, Industrial, Mechatronic, and Manufacturing Engineering 8/1 (2014) 37-44.
  • [129] P. Patel, D. Cassou, Enabling High-Level Application Development for the Internet of Things, Journal of Systems and Software 103 (2015) 62-84. DOI: https://doi.org/10.1016/jJjss.2015.01.027
  • [130] Y. Zhang, G. Zhang, J. Wang, S. Sun, S. Si, T. Yang, Real-Time Information Capturing and Integration Framework of the Internet of Manufacturing Things, International Journal of Computer Integrated Manufacturing 28/8 (2015) 811-822. DOI: https://doi.org/10.1080/0951192X.2014.900874
  • [131] S.F. Wamba, S. Akter, A. Edwards, G. Chopin, D. Gnanzou, How ‘Big Data’ Can Make Big Impact: Findings from a Systematic Review and a Longitudinal Case Study, International Journal of Production Economics 165 (2015) 234-246. DOI: https://doi.org/10J.1016j.ijpe.2014.12J031
  • [132] Y.H. Yin, A.Y.C. Nee, S.K. Ong, J.Y. Zhu, P.H. Gu, L.J. Chen, Automating Design with Intelligent Human-Machine Integration, CIRP Annals 64/2 (2015) 655-677. DOI: https://doi.org/10.1016/j.cirp.2015.05.008
  • [133] M. Colin, R. Galindo, O. Hernandez, Information and Communication Technology as a Key Strategy for Efficient Supply Chain Management in Manufac-turing SMEs, Procedia Computer Science 55 (2015) 833-842. DOI: https://doi.org/10.1016/j.procs.2015.07.152
  • [134] E. Hozdić, Smart Factory for Industry 4.0: A Review, International Journal of Modern Manufacturing Technologies 7/1 (2015) 28-35.
  • [135] R.Y. Zhong, G.Q. Huang, S. Lan, Q.Y. Dai, T. Zhang, C. Xu, A Two-Level Advanced Production Planning and Scheduling Model for RFID-Enabled Ubiquitous Manufacturing, Advanced Engineering Informatics 29/4 (2015) 799-812. DOI: https://doi.org/10.1016Zj.aei.2015.01.002
  • [136] S. Wang, J. Wan, D. Zhang, D. Li, C. Zhang, Towards Smart Factory for Industry 4.0: A Self-Organized Multi-Agent System with Big Data Based Feedback and Coordination, Computer Networks 101 (2016) 158-168. DOI: https://doi.org/10.1016/j.comnet.2015.12.017
  • [137] R.Y. Zhong, S. Lan, C. Xu, Q. Dai, G.Q. Huang, Visualization of RFID-Enabled Shopfloor Logistics Big Data in Cloud Manufacturing, International Journal of Advanced Manufacturing Technology 84/1-4 (2016) 5-16. DOI: https://doi.org/10.1007/s00170-015-7702-1
  • [138] G. Misra, V. Kumar, A. Agarwal, K. Agarwal, Internet of Things (IoT) - A Technological Analysis and Survey on Vision, Concepts, Challenges, Innovation Directions, Technologies, and Applications (An Upcoming or Future Generation Computer Communication System Technology), American Journal of Electrical and Electronic Engineering 4/1 (2016) 23-32. DOI: https://doi.org/10.12691/ajeee-4-1-4
  • [139] A. Schumacher, S. Erol, W. Sihn, A Maturity Model for Assessing Industry 4.0 Readiness and Maturity of Manufacturing Enterprises, Procedia CIRP 52 (2016) 161-166. DOI: https://doi.org/10.1016/j.procir.2016.07.040
  • [140] J. Qin, Y. Liu, R. Grosvenor, A Categorical Framework of Manufacturing for Industry 4.0 and Beyond, Procedia CIRP 52 (2016) 173-178. DOI: https://doi.org/10.1016/j.procir.2016.08.005
  • [141] Referenzarchitekturmodell Industrie 4.0 (RAMI4.0), DIN SPEC 91345:2016-04, Beuth, Berlin, 2016.
  • [142] L.A. Dobrzański, lecture: Comparative analysis of mechanical properties of scaffolds sintered from Ti and Ti6Al4V powders, 22nd Winter International Scientific Conference on "Achievements in Mechanical and Materials Engineering", Winter- AMME’2015, Zakopane, Poland, 2015.
  • [143] L. Bai, C. Gong, X. Chen, Y. Sun, J. Zhang, L. Cai, S. Zhu, S.Q. Xie, Additive manufacturing of customized metallic orthopedic implants: Materials, structures, and surface modifications, Metals 9/9 (2019) 1004. DOI: https://doi.org/10.3390/met9091004
  • [144] E. Zarrabeitia, I. Bildosola, R.M. R^o Belver, I. Alvarez, E. Cilleruelo-Carrasco, Laser Additive Manufacturing: A Patent Overview, in: A. Ortiz, C. Andres Romano, R. Poler, JP. Garaa-Sabater (Eds.), Engineering Digital Transformation. Lecture Notes in Management and Industrial Engineering, Springer, Cham, 2019, 183-191. DOI: https://doi.org/10.1007/978-3-319-96005-0 23
  • [145] D. Dimitrov, K. Schreve, N. Beer, Advances in three dimensional printing - state of the art and future perspectives, Rapid Prototyping Journal 12/3 (2006) 136-147. DOI: https://doi.org/10.1108/13552540610670717
  • [146] C.F.W. Lindemann, U. Jahnke, Modelling of laser additive manufactured product lifecycle costs, in: M. Brandt (Ed.), Laser Additive Manufacturing; Materials, Design, Technologies, and Applications, Woodhead Publishing, 2017, 281-316. DOI: https://doi.orgZ10.1016ZB978-0-08-100433-3.00011-7
  • [147] R. Hólker-Jager, A.E. Tekkaya, Additive manufacture of tools and dies for metal forming, in: M. Brandt (Ed.), Laser Additive Manufacturing; Materials, Design, Technologies, and Applications, Woodhead Publishing, 2017, 439-464. DOI: https://doi.orgZ10.1016ZB978-0-08-100433-3.00017-8
  • [148] S. Sun, M. Brandt, M. Easton, Powder bed fusion processes: An overview, in: M. Brandt (Ed.), Laser Additive Manufacturing; Materials, Design, Technologies, and Applications, Woodhead Publishing, 2017, 55-77. DOI: https://doi.orgZ10.1016ZB978-0-08-100433-3.00002-6
  • [149] H. Sahasrabudhe, S. Bose, A. Bandyopadhyay, Laser- based additive manufacturing processes, in: J. Lawrence (Ed.), Advances in Laser Materials Processing, Woodhead Publishing, 2018, 507-539. DOI: https://doi.org/10.1016/B978-0-08-101252- 9.00017-0
  • [150] M. Shellabear, O. Nyrhila, DMLS - development history and state of the art, LANE 2004 Conference, Erlangen, Germany, 2004.
  • [151] M.W. Khaing, J.Y.H. Fuh, L. Lu, Direct metal laser sintering for rapid tooling: processing and characterisation of EOS parts, Journal of Materials Processing Technology 113/1-3 (2001) 269-272. DOI: https://doi.org/10.1016/S0924-0136(01)00584-2
  • [152] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, T. Gaweł, L.B. Dobrzański, A. Achtelik- Franczak, Fabrication of scaffolds from Ti6Al4V powders using the computer aided laser method, Archives of Metallurgy and Materials 60/2 (2015) 1065-1070. DOI: https://doi.org/10.1515/amm-2015- 0260
  • [153] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, T.G. Gaweł, A. Achtelik-Franczak, Selective laser sintering and melting of pristine titanium and titanium Ti6Al4V alloy powders and selection of chemical environment for etching of such materials, Archives of Metallurgy and Materials 60/3 (2015) 2039-2045. DOI: https://doi.org/10.1515/amm-2015-0346
  • [154] B. Dutta, F.H. Froes, The additive manufacturing (AM) of titanium alloys, in: M. Qian, F.H. Froes (Eds.), Titanium powder metallurgy: science, technology and applications, Butterworth-Heinemann, Waltham, MA, USA - Oxford, UK, 2015, 447-468. DOI: https://doi.org/10.1016/B978-0-12-800054-0.00024-1
  • [155] X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, M. Qian, M. Brandt, Y.M. Xie, Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review, Biomaterials 83 (2016) 127-141. DOI: https://doi.org/10.1016/j.biomaterials.2016.01.012
  • [156] L.A. Dobrzański, Applications of newly developed nanostructural and microporous materials in biomedical, tissue and mechanical engineering, Archives of Materials Science and Engineering 76/2 (2015) 53-114.
  • [157] L.A. Dobrzański, Overview and general ideas of the development of constructions, materials, technologies and clinical applications of scaffolds engineering for regenerative medicine, Archives of Materials Science and Engineering 69/2 (2014) 53-80.
  • [158] S.L. Sing, J. An, W.Y. Yeong, F.E. Wiria, Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs, Journal of Orthopaedic Research 34/3 (2016) 369-385. DOI: https://doi.org/10.1002/jor.23075
  • [159] P.K. Samal, J.W. Newkirk (Eds.), ASM Handbook: Volume 7: Powder Metallurgy, ASM International, Materials Park, 2015.
  • [160] P.K.D.V. Yarlagadda, S. Narayanan (Eds.), GCMM 2004: 1st international conference on manufacturing and management, Alpha Science International, Narosa Publishing House, New Delhi, India, 2005.
  • [161] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Microporous and solid metallic materials for medical and dental application, International OCSCO World Press, Gliwice, Poland, 2017 (in Polish).
  • [162] M.A.K. Bahrin, M.F. Othman, N.H.N. Azli, M.F. Talib, Industry 4.0: A Review on Industrial Auto- mation and Robotic, Jurnal Teknologi 78/6-13 (2016) 137-143. DOI: https://doi.org/10.11113/jt.v78.9285
  • [163] R. Gao, L. Zeng, H. Ding, T. Zhang, X. Wang, Q. Fang, Characterization of oxide dispersion strengthened ferritic steel fabricated by electron beam selective melting, Materials & Design 89 (2016) 1171-1180. DOI: https7/doi.org/10J.1016j.matdes.2Q15J.10J073
  • [164] S. Sahoo, K. Chou, Review on phase-field modeling of microstructure evolutions: application to electron beam additive manufacturing, Proceedings of the ASME 2014 International Manufacturing Science and Engineering Conference, MSEC 2014 collocated with the JSME 2014 International Conference on Materials And Processing and the 42nd North American Manufacturing Research Conference, ASME, Detroit, Michigan, 2014, V002T02A020. DOI: https://doi.org/10.1115/MSEC2014-3901
  • [165] B. Arifvianto, J. Zhou, Fabrication of metallic biomedical scaffolds with the space holder method: a review, Materials 7/5 (2014) 3588-3622. DOI: https://doi.org/10.3390/ma7053588
  • [166] A. Bandyopadhyay, S. Bose (Eds.), Additive manufacturing, CRC Press, Boca Raton, 2019.
  • [167] H. Galarraga, D.A. Lados, R.R. Dehoff, M.M. Kirka, P. Nandwana, Effects of the microstructure and porosity on properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM), Additive Manufacturing 10 (2016) 47-57. DOI: https://doi.org/10.1016/j.addma.2016.02.003
  • [168] M. Koike, P. Greer, K. Owen, G. Lilly, L.E. Murr, S.M. Gaytan, E. Martine, T. Okabe, Evaluation of Titanium Alloys Fabricated Using Rapid Prototyping Technologies - Electron Beam Melting and Laser Beam Melting, Materials 4/10 (2011) 1776-1792. DOI: https://doi.org/10.3390/ma4101776
  • [169] P. Wang, J.S. Wai, M.L.S. Nai, J. Wei, Effects of processing parameters on surface roughness of additive manufactured Ti-6Al-4V via electron beam melting, Materials 10/10 (2017) 1121. DOI: https://doi.org/10.3390/ma10101121
  • [170] P.K. Gokuldoss, S. Kolla, J. Eckert, Additive manufacturing processes: Selective laser melting, electron beam melting and binder jetting - Selection guidelines, Materials 10/6 (2017) 672. DOI: https://doi.org/10.3390/ma10060672
  • [171] C. Korner, Additive manufacturing of metallic components by selective electron beam melting - a review, International Materials Reviews 61/5 (2016) 361-377. DOI: https://doi.org/10.1080/09506608.2016.1176289.
  • [172] R.C. Thomson, M.C. Wake, M.J. Yaszemski, A.G. Mikos, Biodegradable polymer scaffolds to regenerate organs, in: N.A. Peppas, R.S. Langer (Eds.), Biopolymers II. Advances in Polymer Science, vol. 122, Springer, Berlin, Heidelberg, 1995, 245-274. DOI: https://doi.org/10.1007/3540587888 18
  • [173] K. Zhang, W. Liu, X. Shang, Research on the proces- sing experiments of laser metal deposition shaping, Optics & Laser Technology 39/3 (2007) 549-557. DOI: https://doi.org/10.1016/j.optlastec.2005.10.009
  • [174] W. Hofmeister, M. Griffith, M. Ensz, J. Smugeresky, Solidification in direct metal deposition by LENS processing, JOM 53/9 (2001) 30-34. DOI: https://doi.org/10.1007/s11837-001-0066-z
  • [175] V.K. Balla, P.D. De Vas Con Cellos, W. Xue, S. Bose, A. Bandyopadhyay, Fabrication of compositionally and structurally graded Ti-TiO2 structures using laser engineered net shaping (LENS), Acta Biomaterialia 5/5 (2009) 1831-1837. DOI: https://doi.org/10.1016/j.actbio.2009.01.011
  • [176] G.N. Levy, R. Schindel, J.P. Kruth, Rapid manufac- turing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives, CIRP Annals 52/2 (2003) 589-609. DOI: https://doi.org/10.1016/S0007-8506(07)60206-6
  • [177] G.K. Lewis, E. Schlienger, Practical considerations and capabilities for laser assisted direct metal deposition, Materials & Design 21/4 (2000) 417-423. DOI: https://doi.org/10.1016/S0261-3069(99)00078-3
  • [178] A.R.E. Singer, Metal matrix composites made by spray forming, Materials Science and Engineering: A 135 (1991) 13-17. DOI: https://doi.org/10.1016/0921- 5093(91)90528-U
  • [179] A.R.E. Singer, Spray deposition of metal, Metals and Materials 4 (1970) 246-254.
  • [180] A.R.E. Singer, Principles of spray rolling of metals, Metals and Materials 4/6 (1970) 246-250, 257.
  • [181] A.R.E. Singer, Aluminum and aluminum alloy strip produced by spray deposition and rolling, Journal of the Institute of Metals 100 (1972) 185-190.
  • [182] A.R.E. Singer, R.W. Evans, Incremental solidification and forming, Metals Technology 10/1 (1983) 61-68. DOI: https://doi.org/10.1179/030716983803291659
  • [183] A.R.E. Singer, S. Ozbek, Metal matrix composites produced by spray codeposition, Powder Metallurgy 28/2 (1985) 72-78. DOI: https://doi.org/10.1179/pom.1985.28.2.72
  • [184] S.N. Ojha, S.N. Singh, On spray deposition of high- speed steel, Journal of Materials Science Letters 10/15 (1991) 893-895. DOI: https://doi.org/10.1007/BF00724773
  • [185] P.S. Grant, Spray forming, Progress in Materials Science 39/4-5 (1995) 497-545. DOI: https://doi.org/10.1016/0079-6425(95)00004-6
  • [186] R.W. Evans, A.G. Leatham, R.G. Brooks, The Osprey Preform Process, Powder Metallurgy 28/1 (1985) 13-20. DOI: https://doi.org/10.1179/pom.1985.28.1.13
  • [187] E.J. Lavernia, N.J. Grant, Spray deposition of metals: a review, Materials Science and Engineering 98 (1988) 381-394. DOI: https://doi.org/10.1016/0025- 5416(88)90191-7
  • [188] B.A. Rickinson, F.A. Kirk, D.G.R. Davies, CSD: A Novel Process for Particle Metallurgy Products, Powder Metallurgy 24/1 (1981) 1-6. DOI: https://doi.org/10.1179/pom.1981.24.1.1
  • [189] R.G. Brooks, A.G. Leatham, J.S. Coombs, C. Moore, The Osprey process: a novel method for the production of forgings, Metallurgia and Metal Forming 44/4 (1977) 157-163.
  • [190] B. Williams, Metal preforms and powders by the Osprey process, Metal Powder Report 35/10 (1980) 464-466.
  • [191] R.K. Dube, Particle technology method for making metal strip. Part 3, Powder Metallurgy International 14/2 (1982) 108-111.
  • [192] R.G. Brooks, C. Moore, A.G. Leatham, J.S. Coombs, The Osprey Process, Powder Metallurgy 20/2 (1977) 100-102. DOI: https://doi.org/10.1179/pom.1977.20.2.100
  • [193] A.R.E. Singer, Metal Powder Report 41/3 (1986) 223-226.
  • [194] A.G. Leatham, R.G. Brooks, M. Yaman, The Osprey process for the production of spray-deposited roll, disc, tube and billet preforms, Modern Developments in Powder Metallurgy 15 (1984) 157-173.
  • [195] R.G. Brooks, A.G. Leatham, T.R. Dunstan, C. Moore, Osprey Technology for Spray-Deposited Preforms and Powders in Aerospace Applications, in: Powder Metallurgy Superalloys. Aerospace Materials for the 1980's, MPR Publishing Services, 1980.
  • [196] J. Megusar, E.J. Lavernia, P. Domalavage, O.K. Harling, N.J. Grant, Structures and properties of rapidly solidified 9Cr-lMo steel, Journal of Nuclear Materials 122/1-3 (1984) 789-793. DOI: https://doi.org/10.1016/0022-3115(84)90700-1
  • [197] E.J. Lavernia, N.J. Grant, Structures and properties of a modified 7075 aluminum alloy produced by liquid dynamic compaction, International Journal of Rapid Solidification 2/2 (1986) 93-106.
  • [198] I.G. Palmer, R.E. Lewis, D.D. Crooks, The Design and Mechanical Properties of Rapidly Solidified Al-Li-X, in: T.H. Sanders, Jr., E.A. Stark, Jr. (Eds.), Aluminium Lithium Alloys, A.I.M.E., Warrendale, 1981, 241-262.
  • [199] E.J. Lavernia, E. Gomez, N.J. Grant, The structures and properties of Mg-Al-Zr and Mg- Zn-Zr alloys produced by liquid dynamic compaction, Materials Science and Engineering 95 (1987) 225-236. DOI: https://doi.org/10.1016/0025-5416(87)90514-3
  • [200] R.H. Bricknell, The structure and properties of a nickel- base superalloy produced by osprey atomization-depo- sition, Metallurgical Transactions A 17 (1986) 583-591. DOI: https://doi.org/10.1007/BF02643977
  • [201] A.R.E. Singer, A new generation of engineering materials produced by Spray forming, Materials and Design 4/5 (1983) 892-897. DOI: https://doi.org/10.1016/0261-3069(83)90090-0
  • [202] K. Ogata, E.J. Lavernia, G. Rai, N.J. Grant, Structure and properties of a rapidly solidified superalloy produced by liquid dynamic compaction, International Journal of Rapid Solidification 2/1 (1986) 21-35.
  • [203] T.S. Chin, Y. Hara, E.J. Lavernia, R.C. O'Handley, N.J. Grant, (FeCo)-Nd-B permanent magnets by liquid dynamic compaction, Journal of Applied Physics 59/4 (1986) 1297-1300. DOI: https://doi.Org/1a1O63/1.336520
  • [204] S. Tanigawa, Y. Hara, E.J. Lavernia, T.S. Chin, R.C. OHandley, N.J. Grant, Fe-Nd-B permanant magnets made by liquid dynamic compaction, IEEE Transactions on Magnetics 22/5 (1986) 746-748. DOI: https://doi.org/10.1109/TMAG.1986.1064336
  • [205] A. Ataee, Y. Li, G. Song, C. Wen, Metal scaffolds processed by electron beam melting for biomedical applications, in: C. Wen (Ed.), Metallic Foam Bone. Processing, Modification and Characterization and Properties, Woodhead Publishing, 2017, 83-110. DOI: https://doi.org/10.1016/B978-0-08-101289-5.00003-2
  • [206] R. Singh, P.D. Lee, R.J. Dashwood, T.C. Lindley, Titanium foams for biomedical applications: a review, Materials Technology 25/3-4 (2010) 127-136. DOI: https://doi.org/10.1179/175355510X12744412709403
  • [207] P. Hellman, J-H. Stake, Properties and Application of High-Speed Steel Produced by the ASEA-STORA Process. Technology of Special Steels, Instituto Latinoamericano Fierro Acero, Santiago, Chile 1975, G/1, G/3-G/10.
  • [208] P. Hellman, Importance of cutting edge strength, Metal Powder Report 38/9 (1983) 501-504.
  • [209] I.R. Sare, R.W.K. Honeycombe, Micro structural effects of splat cooling a high-speed steel, Metal Science 13/5 (1979) 269-279. DOI: https://doi.org/10.1179/msc.1979.13.5.269
  • [210] R.A. Mesquita, C.A. Barbosa, Evaluation of as- hipped PM high speed steel for production of large- diameter cutting tools, Materials Science Forum 416-418 (2003) 235-240. DOI: https://doi.org/10.4028/www.scientific.net/MSF.416- 418.235
  • [211] A.K. Petrov, Y.N. Skornyakov, G.I. Parabina, A.F. Klimenko, A.N. Osadchii, Properties of high-speed steel blanks produced by hot exteusion of atomized powder, Soviet Powder Metallurgy and Metal Ceramics 19/9 (1980) 604-606.
  • [212] F.A. Kirk, Problems in high-speed steel manufacture and use: A challenge for economic powder metallurgy processing, Powder Metallurgy 24/2 (1981) 70-74. DOI: https://doi.org/10.1179/pom.1981.24.2.70
  • [213] F.J. Jansch, ASP High-Speed Steels, Strojirenska Vyroba 29/1 (1981) 49-53.
  • [214] A. Kasak, E.J. Dulis, Powder-metallurgy tool steels, Powder Metallurgy 21/2 (1978) 114-123. DOI: https://doi.org/10.1179/pom.1978.2E2.114
  • [215] K. Torssell, HIP Steel Components for the Manufacturing Industry, in: M. Koizumi (Ed.), Hot Isostatic Pressing - Theory and Applications, Springer, Dordrecht 1992, 195-208. DOI: https://doi.org/10.1007/978-94-011-2900-8 31
  • [216] P. Beiss, G. Kientopf, Hot isostatically pressed tool steels: heat treatment, alloying effects, chemical composition, in: P. Beiss, R. Ruthardt, H. Warlimont (Eds.), Powder Metallurgy Data, Springer, Berlin, Heidelberg, 2003. DOI: https://doi.org/110- 218.10.1007/10689123 11
  • [217] C. Tornberg, A. Folzer, P/M Tool Steels and High Speed Steels with High Cleanliness and Uniformity Using Latest Processing Technologies, in V. Arnhold, C.-L. Chu, W.F. Jandeska, Jr., H.I. Sanderow (Eds.), Advances in Powder Metallurgy and Particulate Materials 7, Metal Powder Industries Federation, Orlando, 2002, 7-143.
  • [218] C. Tornberg, A. Folzer, New optimised manufacturing route for PM tool steels and High Speed Steels, Proceedings of the 6th International Tooling Conference, Karlstad, Sweden, 2002, 363-376.
  • [219] S. Kleber, M. Walter, Physical simulation and analysis of the hot workability of a new powder metallurgical “micro-clean” HS-steel grade, Materials Science Forum 426-432 (2003) 4173-4178. DOI: https://doi.org/10.4028/www.scientific.net/MSF.426- 432.4173
  • [220] H. Makovec, I. Schemmel, PM Tool Steels: K890 MICROCLEAN-A New, Powder Metallurgy Cold Work Tool Steel Combining Wear Resistance and Highest Ductility, European Congress and Exhibition on Powder Metallurgy, European PM Conference Proceedings 1 (2005) 197.
  • [221] O. Grinder, The HIP way to make cleaner, better steels, Metal Powder Report 62/9 (2007) 16-22. DOI: https://doi.org/10.1016/S0026-0657(07)70190-X
  • [222] F. Engelmark, L.-O. Nordberg, S. Sundin, Hard Materials 2: Recent advances in PM HSS and ASP® at Erasteel, European Congress and Exhibition on Powder Metallurgy. European PM Conference Proceedings 1/2 (2007) 287.
  • [223] A. Riou, Keynote Speech: Gas-atomized PM steels: market overview and trends, European Congress and Exhibition on Powder Metallurgy, European PM Conference Proceedings 1/4 (2007) 1.
  • [224] J. Tengzelius, O. Grinder, Powder metallurgy in Denmark, Finland, and Sweden, International Journal of Powder Metallurgy 44/3 (2008) 41.
  • [225] L.A. Dobrzański, Effects of chemical composition and processing conditions on the structure and properties of high-speed steels, Journal of Materials Processing Technology 48/1-4 (1995) 727-737. DOI: https://doi.org/10.1016/0924-0136(94)01715-D
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5007e0a8-8e1a-41a0-8772-34562fd17cc8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.