PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison and combination of interpolation methods for daily precipitation in Poland: evaluation using the correlation coefficient and correspondence ratio

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Interpolation of precipitation data is a common practice for generating continuous, spatially-distributed fields that can be used for a range of applications, including climate modeling, water resource management, and agricultural planning. To obtain the reference field, daily observation data from the measurement network of the Institute of Meteorology and Water Management – National Research Institute was used. In this study, we compared and combined six different interpolation methods for daily precipitation in Poland, including bilinear and bicubic interpolation, inverse distance weighting, distance-weighted average, nearest neighbor remapping, and thin plate spline regression. Implementations of these methods available in the R programming language (e.g., from packages akima, gstat, fields) and the Climate Data Operators (CDO) were applied. The performance of each method was evaluated using multiple metrics, including the Pearson correlation coefficient (RO) and the correspondence ratio (CR), but there was no clear optimal method. As an interpolated resulting field, a field consisting of the best interpolations for individual days was proposed. The assessment of daily fields was based on the CR and RO parameters. Our results showed that the combined approach outperformed individual methods with higher accuracy and reliability and allowed for generating more accurate and reliable precipitation fields. On a group of selected stations (data quality and no missing data), the precipitation result fields were compared with the fields obtained in other projects-CPLFD-GDPT5 (Berezowski et al. 2016) and G2DC-PLC (Piniewski et al. 2021). The variance inflation factor (VIF) was bigger for the resulting fields (~5), while for the compared fields, it was below 3. However, for the mean absolute error (MAE), the relationship was reversed - the MAE was approximately half as low for the fields obtained in this work.
Twórcy
  • Institute of Meteorology and Water Management - National Research Institute
autor
  • University of Lodz, Department of Meteorology and Climatology
  • Institute of Meteorology and Water Management - National Research Institute
Bibliografia
  • Akima H., Gebhardt A., 2022, Interpolation of Irregularly and Regularly Spaced Data, Package “akima”, version 0.6-3.4, available at https://cran.r-project.org/web/packages/akima/index.html (data access 08.09.2023).
  • Belo-Pereira M., Dutra E., Viterbo P., 2011, Evaluation of global precipitation data sets over the Iberian Peninsula, Journal of Geophysical Research, 116, D20101, DOI: 10.1029/2010JD015481.
  • Benestad R., Buonomo E., Gutiérrez J.M., Haensler A., Hennemuth B., Illy T., Jacob D., Keup-Thiel E., Katragkou E., Kotlarski S., Nikulin G., Otto J., Rechid D., Remke T., Sieck K., Sobolowski S., Szabó P., Szépszó P., Teichmann C., Vautard R., Weber T., Zsebeházi G., 2021, Guidance for EURO-CORDEX climate projections data use, Version 1.1 - 2021.02, available at https://www.euro-cordex.net/imperia/md/content/csc/cordex/guidance_for_euro-cordex_climate_projections_data_use_2021-02_1_pdf (data access 08.09.2023).
  • Benestad R., Haensler A., Hennemuth B., Illy T., Jacob D., Keup-Thiel E., Kotlarski S., Nikulin G., Otto J., Rechid D., Sieck K., Sobolowski S., Szabó P., Szépszó P., Teichmann C., Vautard R., Weber T., Zsebeházi G., 2017, Guidance for EUROCORDEX climate projections data use, Version 1.0 - 2017.08, available at https://www.euro-cordex.net/imperia/md/content/csc/cordex/euro-cordex-guidelines-version1.0-2017.08.pdf (data access 08.09.2023).
  • Berezowski T., Szcześniak M., Kardel I., Michałowski R., Okruszko T., Mezghani A., Piniewski M., 2016, CPLFD-GDPT5: Highresolution gridded daily precipitation and temperature data set for two largest Polish river basins, Earth System Science Data, 8 (1), 127-139, DOI: 10.5194/essd-8-127-2016.
  • Cornes R.C., van der Schrier G., van den Besselaar E.J.M., Jones P.D., 2018, An ensemble version of the E-OBS temperature and precipitation data sets, Journal of Geophysical Research: Atmospheres, 123 (17), 9391-9409, DOI: 10.1029/2017JD028200.
  • Crespi A., Lussana C., Brunetti M., Dobler A., Maugeri M., Tveito O.E., 2019, High resolution monthly precipitation climatologies over Norway (1981-2010): Joining numerical model data sets and in situ observations, International Journal of Climatology, 39 (4), 2057-2070, DOI: 10.1002/joc.5933.
  • Daly C., Slater M.E., Roberti J.A., Laseter S.H., Swift L.W., 2017, High-resolution precipitation mapping in a mountainous watershed: ground truth for evaluating uncertainty in a national precipitation dataset, International Journal of Climatology, 37 (S1), 124-137, DOI: 10.1002/joc.4986.
  • Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S.B., Hersbach H., Hólm E.V., Isaksen L., Kållberg P., Köhler M., Matricardi M., Mcnally A.P., MongeSanz B.M., Morcrette J.-J., Park B.-K., Peubey C., de Rosnay P., Tavolato C., Thépaut J.-N., Vitart F., 2011, The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Quarterly Journal of the Royal Meteorological Society, 137 (656), 553-597, DOI: 10.1002/qj.828.
  • Deque M., Rowell D.P., Luthi D., Giorgi F., Christensen J.H., Rockel B., Jacob D., Kjellstrom E., de Castro M., Van Den Hurk B., 2007, An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections, Climatic Change, 81 (1):53-70, DOI: 10.1007/s10584-006-9228-x.
  • Deque M., Somot S., Sanchez-Gomez E., Goodess C.M., Jacob D., Lenderink G., Christensen O.B., 2012, The spread amongst ENSEMBLES regional scenarios: regional climate models, driving general circulation models and interannual variability, Climate Dynamics, 38 (5), 951-964, DOI: 10.1007/s00382-011-1053-x.
  • FAOSTAT, 2022, Climate Change Data: Annual Surface Temperature Change, available at https://climatedata.imf.org/pages/climatechange-data, (data access 08.09.2023).
  • Giorgi F., Jones C., Asrar G.R., 2009, Addressing climate information needs at the regional level: the CORDEX framework, WMO Bulletin, 58 (3).
  • Gleckler P.J., Taylor K. E., Doutriaux C., 2008, Performance metrics for climate models, Journal of Geophysical Research, 113 (D6), DOI: 10.1029/2007JD008972.
  • Gräler B., Pebesma E., Heuvelink G., 2016, Spatio-Temporal Interpolation using gstat, The R Journal, 8 (1), 204-218, DOI: 10.32614/RJ-2016-014.
  • Herrera S., Kotlarski S., Soares P.M.M., Cardoso R.M., Jaczewski A., Gutiérrez J.M., Maraun D., 2018, Uncertainty in gridded precipitation products: Influence of station density, interpolation method and grid resolution, International Journal of Climatology, 39 (9), 3717-3729, DOI: 10.1002/joc.5878.
  • IMGW-PIB, 2020, Bulletin of National Meteorological and Hydrological Services, (in Polish), Institute of Meteorology and Water Management - National Research, available at https://danepubliczne.imgw.pl/data/dane_pomiarowo_obserwacyjne/Biuletyn_PSHM/Biuletyn_PSHM_2019_ROCZNY.pdf (data access 08.09.2023).
  • IPCC, 2014, Climate Change 2014: Synthesis Report, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Core Writing Team, R.K. Pachauri, L.A. Meyer (eds.), IPCC, Geneva, Switzerland, 151 pp.
  • Jacob D., Petersen J., Eggert B., Alias A., Bøssing Christensen O., Bouwer L.M., Braun A., Colette A., Déqué M., Georgievski G., Georgopoulou E., Gobiet A., Menut L., Nikulin G., Haensler A., Hempelmann N., Jones C., Keuler K., Kovats S., Kröner N., Kotlarski S., Kriegsmann A., Martin E., van Meijgaard E., Moseley C., Pfeifer S., Preuschmann S., Radermacher C., Radtke K., Rechid D., Rounsevell M., Samuelsson P., Somot S., Soussana J.-F., Teichmann C., Valentini R., Vautard R., Weber B., Yiou P., 2014, EURO-CORDEX: new high-resolution climate change projections for European impact research, Regional Environmental Change, 14, 563-578, DOI: 10.1007/s10113-013-0499-2.
  • Jones P.W., 1998, A User’s Guide for SCRIP: A Spherical Coordinate Remapping and Interpolation Package, available at https://raw.githubusercontent.com/wiki/SCRIP-Project/SCRIP/files/SCRIPusers.pdf (data access 08.09.2023).
  • Karger D.N., Conrad O., Böhner J., Kawohl T., Kreft H., Soria-Auza R.W., Zimmermann N.E., Linder H.P., Kessler M., 2017, Climatologies at high resolution for the earth’s land surface areas, Scientific Data, 4, 170122, DOI: 10.1038/sdata.2017.122.
  • Konca-Kędzierska K., 2019, Evaluation of the precipitation field reconstructed in the climate models from the EURO-CORDEX project for the Polish domain in the 1978-2005 period, (in Polish), [in:] Współczesne problem klimatu Polski, L. ChojnackaOżga, H. Lorenc (ed.), Warszawa, IMGW-PIB, 173-185.
  • NOAA, 2022, Climate Change: Global Temperature, available at https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature (data access 08.09.2023).
  • Nychka D., Furrer R., Paige J., Sain S., 2017, fields: Tools for spatial data, R package version 11.6, DOI: 10.5065/D6W957CT, available at https://github.com/NCAR/Fields (data access 08.09.2023).
  • Otto S.A., 2019, How to normalize the RMSE, available at www.marinedatascience.co/blog/2019/01/07/normalizing-the-rmse/ (data access 08.09.2023).
  • Pebesma E.J., 2004, Multivariable geostatistics in S: the gstat package, Computers & Geosciences, 30 (7), 683-691, DOI: 10.1016/j.cageo.2004.03.012.
  • Piniewski M., Szcześniak M., Kardel I., Chattopadhyay S., Berezowski T., 2021, G2DC-PLC: a gridded 2 km daily climate dataset for the union of the Polish territory and the Vistula and Odra basins, Earth System Science Data, 13, 1273-1288, DOI: 10.5194/essd-13-1273-2021.
  • Prasad M.S.G., Sushma N., 2016, Spatial prediction of rainfall using universal kriging method: a case study of Mysuru District, International Journal of Engineering Research & Technology - Geospatial, 4 (20), DOI: 10.17577/IJERTCONV4IS20010.
  • R Core Team, 2018, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, available at https://www.R-project.org/ (data access 08.09.2023).
  • Schulzweida U., 2019, CDO User Guide (Version 1.9.8), DOI: 10.5281/zenodo.3539275.
  • Sheffield J., Goteti G., Wood E.F., 2006, Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling, Journal of Climate, 19, 3088-3111, DOI: 10.1175/JCLI3790.1.
  • von Storch H., Zwiers F.W., 1999, Statistical Analysis in Climate Research, Cambridge University Press, Cambridge, DOI: 10.1017/CBO9780511612336.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5006743a-a800-4c13-a3d7-1748ad423ba2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.