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Abstract
This work is devoted to an evaluation of the capabilities of artificial neural networks (ANN) in terms of developing a flow 
stress model for magnesium ZE20. The learning procedure is based on experimental flow-stress data following inverse analy-
sis. Two types of artificial neural networks are investigated: a simple feedforward version and a recursive one. Issues related to 
the quality of input data and the size of the training dataset are presented and discussed. The work confirms the general ability 
of feedforward neural networks in flow stress data predictions. It also highlights that slightly better quality predictions are 
obtained using recursive neural networks. 
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1. Introduction

Flow stress models (Pietrzyk et al., 2015) describe mate-
rial behaviour during numerical simulations in terms of 
plastic deformation at different temperatures and strain 
rates. Flow stress data are most often determined by means 
of typical plastometric tests, e.g., uniaxial compression or 
tension. Standard flow stress models are based on closed-
form mathematical equations where yield stress is de-
scribed as a function of temperature, strain, and strain rate. 
The advantage of these approaches is the simple form of 
the mathematical function used to describe the flow stress 
evolution. However, conventional models do not take the 
influence of deformation history into account. Therefore, 
several more advanced flow stress models have been de-
veloped over the years, such as those based on internal 
variables (Roucoules et al., 2003). However, improving 

the predictive capabilities of models usually involves ex-
tending the computation time, especially when the finite 
element method is used for analysis. Therefore, there is 
a constant search for alternative approaches ensuring ac-
curacy and acceptable computation time.

Data-driven flow stress models based on machine 
learning (ML) approaches have attracted increasing at-
tention in recent years. ML is a group of approaches used 
in many different fields, e.g., to predict a protein’s behav-
iour (Kozuch et al., 2018), design new materials (Cur-
tarolo et al., 2013; Shi et al., 2019), or to predict the risk 
of delays in construction work (Gondia et al., 2020). An 
interesting application of ML is also presented in works 
by Pietrzyk et al. (2016), Mozaffar et al. (2019) and 
Stendal et al. (2018), which showed that it is possible to 
accurately predict materials’ plasticity with deep learn-
ing approaches. ML approaches are primarily used as 
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a substitute for time-consuming internal variable models 
or even complex multiscale approaches. However, ML 
can also be used to substitute the standard flow stress 
models when various deformation mechanisms (e.g. 
twinning, shear band development) control the deforma-
tion or when more complex deformation conditions (e.g. 
dynamic loading) are investigated. In such cases, the ex-
perimental data may not be sufficiently approximated by 
the mathematical formula (Deb et al., 2022). 

Therefore, the current work aims to evaluate issues 
associated with the application of artificial neural net-
works (Baraniuk et al., 2020) to develop a flow stress 
model for magnesium ZE20 alloy. Computational mod-
els based on a deep learning algorithm recreate data at 
many abstraction levels (LeCun et al., 2015). The flow 
stress model in this research is being developed for 
a wide range of temperature and strain rate conditions. 

2. Machine learning

Arthur Samuel is considered the founder of the term “ma-
chine learning” in 1959, defining it as computers’ ability 
to learn without direct programming. ML is one of the 
essential sub-fields of artificial intelligence devoted to al-
gorithms that learn from environmental data and stimuli, 
attempting in this respect to imitate human intelligence.

One of the basic machine learning solutions is ar-
tificial neural networks with an architecture inspired by 
the neuron structure of humans. As a  result, the net-
work consists of neurons aligned in layers that receive 
incoming stimuli, before selecting and developing an 
appropriate response. Neurons are connected, and there 
is a weight associated with each connection, as seen in 
Figure 1. The interpretation of these weights depends 
on the model of the neural network selected.

The crucial stage in neural network model develop-
ment is the learning process. Learning is an algorithmic 
procedure that uses input data which the neural network 
uses to adapt its architecture to a given problem. The algo-
rithm learns the patterns that occur, the relationships be-
tween the training set’s values, and analyzes the obtained 
mathematical operations results. As an outcome, the mod-
el can find a solution to a given problem with a certain 

degree of probability. The algorithm processes the train-
ing data in the additional adaptation stage and learns from 
the mistakes (El Naqa et al., 2015). There are four main 
types of machine learning, including supervised learn-
ing – a learning process in which the training data results 
for a given data set are known. The algorithm learns by 
analyzing given results, detects dependencies in the input 
variables, and provides a probable response based on the 
analysis. The second type is semi-supervised learning – 
a learning process in which some of the training data re-
sults for a given data set is known. The third is unattended 
learning – the algorithm has no sample output for a given 
set of data. The neural network learns the patterns in the 
input data and predicts the output results. In this case, the 
accuracy of the obtained results increases with the training 
dataset size increase. Finally, the fourth variant is the re-
inforced type of learning. In this case, the neural network 
receives a set of permitted actions, statements, and rules as 
input information. Then it analyzes the results and effects 
of the performed actions. 

A wide variety of different types of neural networks 
can be found in the scientific literature (Kiang et al., 
2003; Lopez-Garcia et al., 2020). They can be divided 
according to learning method, the number of layers, type 
of the activation function, or signal distribution method. 
Two approaches were selected for the current investiga-
tion, the feedforward and recurrent ones. 

3. Feedforward and recursive 
neural networks

The feedforward approach represents a  basic type of 
neural network that is based only on a one-way direc-
tion signal processing (Fig. 2); therefore, they cannot 
include temporal dynamic effects.

The selected ANN was trained based on a set of exper-
imental data obtained from a standard uniaxial compres-
sion plastometric test (Plumeri et al., 2019). The experi-
mental data were obtained at a range of process conditions: 
T = 425°C, 400°C, 375°C, 350°C, 200°C and strain rates: 
10 1/s, 5 1/s, 0.1 1/s, 0.01 1/s. Measured load-displacement 
data were then used to determine flow stress values based 
on the inverse analysis technique (Plumeri et al., 2019). 

Fig. 1. Concept of an artificial neuron
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In this manner, the quality of experimental input data is 
ensured as the inverse approach considers the influence 
of process heterogeneities, including friction or defor-
mation heating, on flow stress data. However, to reduce 

the inverse analysis computing time, the number of input 
data is often reduced below 100 points for a particular 
flow stress curve. A set of flow stress curves used during 
the ANN development procedure is shown in Figure 3.

Fig. 2. Concept of the feedforward neural network

Fig. 3. Stress-strain curves determined based on experimental measurements and inverse analysis

An additional smoothing operation of the flow 
stress curves was performed with the data approxima-

tion technique to improve the training data set quality, 
as seen in Figure 4.
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Fig. 4. Example of smoothed flow stress curves determined based on experimental measurements  
and inverse analysis for the T = 450°C

The 19 recorded stress-strain curves with approx. 
L = 67 points each were used to develop a first training 
dataset for the ANN. A separate set of stress-strain points 
with respect to the particular processing conditions (T, Ɛ

.
) 

was used for the training. In that case, the training data 
set contains 1292 points (σp, Ɛi, T,  Ɛ

.
). The selected 

stress-strain curve for T = 375°C and strain rate of 0.1 1/s 
was used to verify the results returned by the trained net-
work. The ANN was initiated ten times to confirm the 
repetitive behaviour in the verification stage. 

The sequential model, where each layer has ex-
actly one input and output vector, with the rectified 
linear unit (ReLU) activation function (Xiang et al., 
2021), was used for the investigations. The neural 
network structure was first developed on the basis 
of a  trial and error procedure. A  set of architectures 
was investigated based on shallow and deep neural 
networks (Stendal et  al., 2019). It was found that in 
the investigated case, the best architecture consists of 
an input layer, an output layer, and two hidden layers 
with 32 and 16 neurons, respectively. The neural net-
works’ training was based on the mean square error 

loss function (MSE) and RMSprop optimization algo-
rithm (Lee et al., 2021).

At the same time, a  more advanced ANN model 
based on a recursive algorithm (Khnissi et al., 2020) was 
also used for the investigation. Contrary to the feedfor-
ward artificial neural network, in which the flow of sig-
nals from the input to the output is unidirectional, the 
recursive neural networks introduce feedback loops, as 
illustrated in Figure 5. The same network setup parame-
ters were used for feedforward and recursive ANNs. 

Fig. 5. Concept of the recursive neural network
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4. Results and discussion

Both ANN types were used in the research under the 
concept of the supervised training approach. As already 
mentioned, the verification of the ANN behaviour also 
involved the repeatability of the predictions. For this, the 

ANN was initiated 10 times for each process condition. 
Obtained results for the feedforward and recursive neu-
ral networks training based on L = 67 are gathered in 
Figure 6. Based on these results, the best and the mean 
flow stress (average from all the cases) predictions were 
tested against the test data set as presented in Figure 7.

a)

   

b)

 
Fig. 6. Repeatability of the feedforward (a) and recursive neural networks predictions (b) for the training on the initial data set

a)

  

b)

 
Fig. 7. Verification with the experimental data the best (a) and the mean (b) flow stress prediction

As presented, both the accuracy as well as the re-
peatability of flow stress curves for such a small train-
ing data set are unacceptable. Therefore, the number 
of training data was artificially augmented to improve 
the learning stage. In this case, an additional set of 
stress-strain points was generated as an average value 
of the two neighbouring original points. With that, the 
number of points in each stress-strain curve increased 
to L = 133, 265, 529 and 1057. That way, it is possible 

to evaluate how the ANN training process is affected 
by the number of training data points (Tab. 1). The 
training was done with the same ANN setup as pre-
viously. The repeatability results for subsequent case 
studies are collected in Figures 8 and 9. 

Again for the testing purposes, the best and the 
mean predictions were compared against the test 
data set, as presented in Figures 10 and 11, respec-
tively.

Table 1. Size of the training data sets

Number of points in a single flow stress curve L 133 256 529 1057

Number of points in the training data set T 2527 4864 10051 20083
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a) 

 

b) 

c)

  

d)

 
Fig. 8. Repeatability of the feedforward neural network predictions for the training on increasing data set size L:  

a) 133; b) 265; c) 529; d) 1057

a) 

 

b) 

c)

 

d) 

Fig. 9. Repeatability of the recursive neural network predictions for the training on increasing data set size L: 
 a) 133; b) 265; c) 529; d) 1057
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a) 

 

b) 

 
c) 

  

d) 

 
Fig. 10. Verification with the experimental data for the best predictions for the training on increasing data set size L: 

 a) 133; b) 265; c) 529; d) 1057

a)   b)

 
c) 

 

d)

 
Fig. 11. Verification with the experimental data for the mean predictions for the training on increasing data set size L:  

a) 133; b) 265; c) 529; d) 1057
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In the case of the best and mean flow stress curves, 
the recursive neural network already provides an accept-
able solution for L = 133 training set, while the feedfor-
ward for L = 265. As seen, with an increasing number of 
points in the training data set, the repeatability of the pre-
dictions increases. However, the good repeatability of the 
predictions is obtained from the networks trained using 
the largest data set. In the case of the feedforward pre-
diction, a typical step-shaped flow stress curve is predict-
ed, which has to be treated as an artefact. When the mean 
value from several ANN runs is considered, this artefact 
is eliminated from the predictions, but it requires addition-
al computational effort. Nevertheless, using mean values 
from several ANN predictions can increase the quality of 
the results in both feedforward and recursive neural net-
works. The results obtained also demonstrated that the 
training data set does not have to contain a huge number 
of training points. Therefore, if properly developed, both 
feedforward and recursive ANN can be used to generate 
flow stress data during, e.g., finite element simulations. 

Conclusions

The obtained flow stress curves confirmed the effec-
tiveness of the ANN algorithms in predicting the ma-

terial behaviour under loading conditions in a  wide 
range of processing conditions. In general, both feed-
forward and recursive ANN provide satisfactory re-
sults demonstrating a high level of repeatability. The 
repeatability of  ANN predictions should be taken into 
account for practical use during finite element calcu-
lations, for example. An average value from several 
ANN runs should be used in this case. This is espe-
cially important for feedforward networks that have 
a  tendency to predict stepped shaped flow curves. 
Therefore, the ANN can be used as a flow stress mod-
el of the ZE20 magnesium alloy for the finite element 
calculations, but the number of training data set has to 
be sufficiently large. 

Future work will be focused on training the ANN, 
based on both stress-strain curves as well as the first de-
rivative of the flow stress with respect to strain. Such an 
approach will then be used for the finite element simu-
lation as a flow stress model. 
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