Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Some variants of the Lagrange and Cauchy mean-value theorems lead to the conclusion that means, in general, are not symmetric. They are symmetric iff they coincide (respectively) with the Lagrange and Cauchy means. Under some regularity assumptions, we determine the form of all the relevant symmetric means.
Wydawca
Czasopismo
Rocznik
Tom
Strony
461--474
Opis fizyczny
Bibliogr. 10 poz.
Twórcy
autor
- Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, PL-65246 Zielona Góra, Poland
Bibliografia
- [1] P. S. Bullen, D. S. Mitrinović, P. M. Vasić, Means and their Inequalities, D. Reidel Publishing Company, Dordrecht–Boston–Lancaster–Tokyo, 1988.
- [2] P. S. Bullen, Handbook of Means and their Inequalities, Mathemtics and Its Applications, Vol. 560, Kluwer Academic Publishers, Dordrecht–Boston–London, 2003.
- [3] D. Głazowska, J. Matkowski, An invariance of geometric mean with respect to Lagrangian means, J. Math. Anal. Appl. 331(2) (2007), 1187–1199.
- [4] J. Matkowski, Mean value property and associated functional equations, Aequationes Math. 58(1-2) (1999), 46–59.
- [5] J. Matkowski, Lagrangian mean-type mappings for which the arithmetic mean is invariant, J. Math. Anal. Appl. 309(1) (2005), 15–24.
- [6] J. Matkowski, On iterations of means and functional equations. Iteration theory (ECIT'04), Grazer Math. Ber., 350, 2006, 184–201.
- [7] J. Matkowski, On weighted extensions of Cauchy’s means, J. Math. Anal. Appl. 319(1) (2006), 215–227.
- [8] J. Matkowski, A mean-value theorem and its applications, J. Math. Anal. Appl. 373 (2011), 227–234.
- [9] J. Matkowski, Power means generated by some mean-value theorems, Proc. Amer. Math. Soc. 139 (2011), 3601–3610.
- [10] J. Matkowski, I. Pawlikowska, Homogeneous means generated by a mean-value therem, J. Math. Ineq. 4 (2010), 467–479.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5003851d-a3b3-4641-ae76-10c3fa0df1f3