PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new approach for reduction of the noise from microscopy images using Fourier decomposition

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, an efficient method based on the Fourier decomposition method (FDM) is presented for noise removal of medical microscopic images. We propose an adaptive thresholding technique based FDM for denoising of heavily degraded images. An accurate image deconvolution is done with variance stabilization transformation and multi-scale Wiener filtering as a pre-processing step. The different series of frequency intrinsic band functions (FIBF’s) obtained with FDM which are further separated into noise and signal-significant FIBF’s based on cosine similarity index. The FDM adaptive thresholding technique is used to filter-out the unwanted frequency coefficients related to mixed Poisson-Gaussian noise (MPG). The thresholded FIBF’s and signal significant FIBF’s are combined to obtained reconstructed output. Finally, the optimization is done using mixed noise unbiased risk estimate (MNURE). To evaluate the effectiveness of proposed scheme, we have compared the results of the proposed scheme with six different state-of-the-art techniques. The simulation results verify, the effectiveness of proposed method. The proposed algorithm achieves better performance in terms of four quantitative evaluation measures by reducing the effect of noise.
Twórcy
autor
  • Department of Electronics and Communication Engineering, National Institute of Technology Goa, 403401, India
  • Department of Electronics and Communication Engineering, National Institute of Technology Goa, India
  • Department of Electrical Engineering, Indian Institute of Technology Jammu, India
  • Department of Instrumentation and Control Systems Engineering, PSG College of Technology, Coimbatore, India
Bibliografia
  • [1] Zhang Y, Zhu Y, Nichols E, Wang Q, Zhang S, Smith C, Howard S. A poisson-gaussian denoising dataset with real fluorescence microscopy images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. p. 11710–8.
  • [2] Miyawaki A, Sawano A, Kogure T. Lighting up cells Labelling proteins with fluorophores. Nat Cell Biol 2003;5:1–7.
  • [3] Belmont AS. Visualizing chromosome dynamics with GFP. Trends Cell Biol 2001;11:250–7.
  • [4] Monici M. Cell and tissue auto fluorescence research and diagnostic applications. Biotechnol Annual Rev 2005;11:227–56.
  • [5] Sarder P, Nehorai A. Deconvolution methods for 3-D Fluorescence microscopy images. IEEE Signal Process Mag 2006;23:32–45.
  • [6] Rasal T, Veerakumar T, Subudhi BN, Esakkirajan S. Mixed Poisson Gaussian noise reduction in fluorescence microscopy images using modified structure of wavelet transform. IET Image Proc 2021;15:1383–98.
  • [7] Meiniel W, Olivo-Marin JC, Angelini ED. Denoising of microscopy images: A review of the state-of-the-art, and a new sparsity based method. IEEE Trans Image Process 2018;27:3842–56.
  • [8] Singh P, Joshi SD, Patney RK, Saha K. The Fourier decomposition method for nonlinear and non-stationary time series analysis. Proc R Soc A 2017;473:20160871.
  • [9] Singh P, Joshi SD. Some studies on multidimensional Fourier theory for Hilbert transform, analytic signal and AM-FM representation. Circuits Syst Signal Process 2019;38:5623-5650.
  • [10] Rudin LI, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D 1992;60:259–68.
  • [11] Louchet C, Moisan L. Total variation denoising using iterated conditional expectation. In Proceedings of IEEE Signal Processing; 2014. pp. 1592–1596.
  • [12] Louchet, Moisan L. Posterior expectation of the total variation model: Properties and experiments. SIAM J Imaging Sci 2013;6:2640–84.
  • [13] Sawatzky A, Brune C, Muller J, Burger M. Total variation processing of images with Poisson statistics. In Proceedings of Computer Analysis of Images and Patterns; 2009. pp. 533–540.
  • [14] Deledalle CA, Tupin F, Denis L. Poisson NL means: Unsupervised non local means for Poisson noise. In: 17th IEEE International Conference on Image processing. p. 801–4.
  • [15] Salmon J, Harmany Z, Deledalle C-A, Willett R. Poisson noise reduction with non-local PCA. J Math Imaging Vis 2014;48:279–94.
  • [16] Shahdoosti Hamid Reza, Hazavei Seyede Mahya. A new compressive sensing based image denoising method using block-matching and sparse representations over learned dictionaries. Multimedia Tools Appl 2019;78:12561–82.
  • [17] Shahdoosti Hamid Reza, Rahemi Zahra. Edge-preserving image denoising using a deep convolutional neural network. Signal Process 2019;159:20–32.
  • [18] Zhang B, Fadili JM, Starck JL. Wavelets, ridgelets, and curvelets for Poisson noise removal. IEEE Trans Image Process 2008;17:1093–108.
  • [19] Kopsinis Y, McLaughlin S. Development of emd-based denoising methods inspired by wavelet thresholding. IEEE Trans Signal Process 2009;57(4):1351–62.
  • [20] Le Montagner Y, Angelini ED, Olivo-Marin JC. An unbiased risk estimator for image denoising in the presence of mixed Poisson-Gaussian noise. IEEE Trans Image Process 2014;23:1255–68.
  • [21] Li J, Luisier F, Blu T. PURE-LET image deconvolution. IEEE Trans Image Process 2018;27:92–105.
  • [22] Harmany ZT, Marcia RF, Willett RM. This is SPIRALTAP: Sparse Poisson intensity reconstruction algorithms theory and practice. IEEE Trans Image Process 2011;21:1084–96.
  • [23] Abergel R, Louchet C, Moisan L, Zeng T. Total variation restoration of images corrupted by Poisson noise with iterated conditional expectations. In: Proceedings of SSVM in Computer Vision. p. 178–90.
  • [24] Bindilatti AA, Vieira MA, Mascarenhas ND. Poisson Wiener filtering with non-local weighted parameter estimation using stochastic distances. Signal Process 2018;144:68–76.
  • [25] Makitalo M, Foi A. Optimal inversion of the Anscombe transformation in low-count Poisson image denoising. IEEE Trans Image Process 2010;20(1):99–109.
  • [26] Li C, Zhang J, Kulwa F, Qi S, Qi Z. A SARS-CoV-2 Microscopic image Dataset with ground truth images and visual features. Chinese Conference on Pattern Recognition and Computer Vision 2020:244–55.
  • [27] Riffle M, Davis TN. The Yeast resource center public image repository: A large database of fluorescence microscopy images. BMC Bioinformatics 2010;11:263.
  • [28] Maska M, Ulman. A benchmark for comparison of cell tracking algorithms. Bioinformatics 2014;30:1609-1617.
  • [29] Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: From error visibility to structural similarity. IEEE Trans Image Process 2004;13:600–12.
  • [30] Makitalo M, Foi A. Optimal inversion of the generalized Anscombe transformation for Poisson-Gaussian noise. IEEE Trans Image Process 2013;22(1):91–103.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5001109d-0e3d-4db5-a050-65df9b4a5294
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.