Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The minimising of environmental pollution is a challenge for Ecuadorian sugar industries. CO2 from combustion of sugarcane waste (bagasse), needs to be processed immediately after emission. Including ecofriendly energy to replace the use hydrocarbon fuels is other interesting way to reduce the environmental carbonization. Unify these two proposals in the production of a product, is the objective of this innovative work, to the best of our knowledge, it has not been done in Ecuador. CO2 from burnt sugarcane waste, was captured and reacted with hydrolysed hydrogen to obtain methanol. And, a solar photovoltaic (PV) system was designed to provide clean energy, at the stage of methanol distillation, critical in terms of pollution. Optimum process conditions were found to carry out the distillation in a column 57 plates, flux ratio 1.2 and fed temperature 80 °C. Environmental conditions of geographic region, daily peak sun, technical data about power, voltage, current and material of solar panels and inverter were used in the models proposed by Kayode and Enock for solar system design. Methanol product was purified from 47.5 to 99.92% mol, confirming the effectiveness of the absorption by Monoehtanolamine and distillation as separation methods. Resulted of the energy balance, 650KW is the wattage for powering the overall PV system. 1300 monocrystalline silica solar panels of 500W, were connected to 11 grid string inverters, each one 80 kW, following the optimal design calculated. Our results clearly indicate a novel viability to reduce CO2 and save hydrocarbon fuel consumption, which is not unlimited resource and main air pollutant.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
147--157
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- Department of Natural Resources and Chemical Engineering, Tafila Technical University, P.O. Box 179, Tafila, 66110, Jordan
Bibliografia
- 1. Andreado S. 2020. Modelling of bagasse combustion. www.researchgate.net/publication/340315422_ Modelling_of_bagasse_combustion
- 2. Aoun N., Bouchouicha K., Chenni R. 2017. Performance Evaluation of a Mono-Crystalline Photovoltaic Module Under Different Weather and Sky Conditions. International Journal of Renewable Energy Research, 7(1), 292–297.
- 3. Brar Singh M., Kumar1 R., Sarita, Sushil K.2017. Conversion of Solar Energy into Electrical Energy Using Photovoltaic Technology: A Review. International Archive of Applied Sciences and Technology, 8(4), 14–18.
- 4. Chauhan M.K., Varun C.S., Suneel K.S. 2011. Life cycle assessment of sugar industry: A review. Renewable and Sustainable Energy Reviews, 15, 3445–3453.
- 5. Cuezzo A., Araujo P., Mele F. 2021. Simulacion de un proceso de fabricacion de methanol a partir de fuentes renovables. Simposio Argentino de Informática Industrial e Investigación Operativa (50JAIIO – SIIIO-ISSN: 2618-3277), 20–31.
- 6. De Lima L.C., De Araujo Ferreira L., De Lima Morais F.H. 2017. Performance Analysis of a Grid Connected Photovoltaic System in Northeastern Brazil, Energy for Sustainable Development, 37, 79–85.
- 7. Ed F. 2019. Calculation of a grid connected solar energy system. Cooperative extension of University of Arizona, 1–8.
- 8. https://info.undp.org/docs/pdc/Documents Last visit: 04-09-2024
- 9. https://www.researchgate.net/publication/338843581_Mapa_Solar_del_Ecuador_2019. Last visit: 04-09-2024
- 10. Kayode M., Enock A. 2022. Design of a PV system. Global Scientific Journal, 10(6), 1233-1243.
- 11. Kim J., Henao C.A., Johnson T.A., Dedrick D.E., Miller J.E., Stechel E.B. 2011. Methanol production from CO2 using solar-thermal energy: process development and techno-economic analysis. Energy Environ Sci, 4, 3122–3132.
- 12. Li Danny H.W., Cheung Gary H.W., Lam Joseph C. 2005. Analysis of The Operational Performance and Efficiency Characteristic for Photovoltaic System in Hong Kong. Energy Conversion and Management, 46(7–8), 1107–1118.
- 13. Li B.H., Zhang N., Smith R. 2016. Simulation and analysis of CO2 capture process with aqueous monoethanolamine solution. Applied Energy, 161, 707–717.
- 14. Lv B., Guo B., Zhou Z., Jing G. 2015. Mechanisms of CO2 Capture into Monoethanolamine Solution with Different CO2 Loading during the Absorption/Desorption Processes. Environmental Science & Technology, 49(17), 10728–10735. https://doi.org/10.1021/acs.est.5b02356
- 15. Meunier N., Chauvy R., Mouhoubi S., Thomas D., De Weireld G. 2020. Alternative production of methanol from industrial CO2 . Renewable energy, 146, 1192–1203.
- 16. Osterberg K. 2016. Selecting appropriate PV array string sizes. Home Power Magazine, 173, 16–18. Retrieved from: https://www.homepower.com/articles/solar-electricity/design-installation/methodsselecting-appropriate-pv-array-string-sizes
- 17. Pérez-Fortes M., Schöneberger J.C., Boulamanti A., Tzimas E. 2016. Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment. Applied Energy, 161, 718–732.
- 18. Quijera J.A., González M., Labidi J. 2011. Usage of Solar energy in an industrial process. Chemical Engineering Transactions, 25, 875–880. DOI: 10.3303/CET1125146.
- 19. Reges J.P., Braga E.J., Dos L.C., Mazza S., De Alexandria A.R. 2017. Inserting photovoltaic solar energy to an automated irrigation system. International Journal of Computer Applications, 134(10), 90–98.
- 20. Saly V., Vary M., Packa J., Firicky E., Perny M., Kubica J. 2014. Performance And Testing of a Small Roof Photovoltaic System. Journal Of Electrical Engineering, 65(7s), 15–19.
- 21. Shukla A., Kumar S. 2018. Comparative study of sugarcane bagasse gasification and direct combustions. Jr. of Industrial Pollution Control, 34(2), 2063–2074. www.icontrolpollution.com
- 22. Sugianto P. 2020. Comparative Analysis of Solar Cell Efficiency between Monocrystalline and Polycrystalline. Jurnal Penelitian, 7(2), 92–100. http://dx.doi.org/10.31963/intek.v7i2.2625
- 23. Sunitha K.A., Prem Kumar G., Nidhi Priya, Jatin Verma. 2017. Design of Highly Efficient MPPT Solar Inverter. MATEC Web of Conferences, 108, 14004. DOI:10.1051/matecconf/201710814004.
- 24. Szima S., Cormos C.C. 2018. Improving methanol synthesis from carbon-free H2 and captured CO2 : A techno-economic and environmental evaluation. Journal of CO2 Utilization, 24, 555–563.
- 25. Tillahodjaev R.R., Mirzaev A.A. 2020. Calculation of the solar energy system. International Journal of Innovations in Engineering Research and Technology, 54–57.
- 26. Van-Dal É.S., Bouallou C. 2013. Design and simulation of a methanol production plant from CO2 hydrogenation. Journal of Cleaner Production, 57, 38–45.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ff7bfb7-879e-42b7-b1ea-c88ecd6aed2c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.