PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Role of Acid Hardener on the Hardening Characteristics, Collapsibility Performance, and Benchlife of the Warm-Box Sand Cores

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The heat-cured core-making process has been applied for over 60 years to produce molds and cores for different types of castings. The following technologies can be classified into the terminology of “heat-cured coremaking process”: croning-, hot-box -, and warm-box process. The latest technology provides good workability of core mixture, good strength properties, dimensional stability, and good knockout performance of the sand cores. Despite all its advantages, the warm-box technology is less widespread in foundries due to the cost of the high quality thermosetting resin and the maintenance cost of the core box. In this study, the influence of the acid hardener content on the hardening characteristics (bending strength), collapsibility, and the benchlife of the warm-box sand cores were investigated. From the results, it can be said, that within the investigated composition range, increasing the acid hardener content will improve the bending strength of the sand cores. The increased acid hardener content results in higher thermal stability at the beginning of the thermal exposure, and smaller residual bending strength after 15 minutes of thermal loading. The acid hardener level has little effect on the benchlife of the warm-box sand cores, although the sand core mixture is very sensitive to the combined effect of the sand temperature and dwelling time.
Rocznik
Strony
68--74
Opis fizyczny
Bibliogr. 28 poz., il., tab., wykr.
Twórcy
  • University of Miskolc, Faculty of Materials Science of Engineering, Institute of Foundry, Hungry
autor
  • University of Miskolc, Faculty of Materials Science of Engineering, Institute of Foundry, Hungry
  • University of Miskolc, Faculty of Materials Science of Engineering, Institute of Foundry, Hungry
Bibliografia
  • [1] Jorstad, J., Krusiak, M.B., Serra, J.O., La Fay, V. (2008). Aggregates and Binders for Expendable Molds. In ASM handbook. Volume 15 (pp. 528-548). https://doi.org/10.31399/asm.hb.v15.a0005242.
  • [2] Czerwinski, F., Mir, M. & Kasprzak, W. (2015). Application of cores and binders in metalcasting. International Journal of Cast Metal Research. 28(3), 129-139. DOI: 10.1179/ 1743133614Y.0000000140.
  • [3] Campbell, J. (2011). Complete Casting Handbook: Molding, J. Campbell (Ed.). Elsevier Ltd., 911-938.
  • [4] Holtzer M. & Kmita A. (2020). Division of the molding and core sands: criteria. Mold and core sands in metalcasting: chemistry and ecology (pp. 129-144). Switzerland: Springer Cham. DOI: 10.1007/978-3-030-53210-9.
  • [5] Trinowski, D.M.. (2010). Foundry. In L. Piltao (Eds.), Phenolic Resins A Century of Progress. Berlin Heidelberg: Springer. 451-502. DOI:10.1007/978-3-642-04714-5.
  • [6] Gyarmati, G., Budavári, I., Fegyverneki G. & Varga L. (2021). The effect of sand quality on the bending strength and thermal distortion of chemically bonded sand cores. Heliyon. 7(7), e07624, 1-8. DOI :10.1016/j.heliyon.2021.e07624.
  • [7] Dobosz, St. M., Grabarczyk, A., Major-Gabryś, K. & Jakubski, J. (2015). Influence of quartz sand quality on bending strength and thermal deformation of moulding sands with synthetic binders. Archives of Foundry Engineering. 15(2), 9-12. DOI: 10.1515/afe-2015-0028.
  • [8] Dańko, R. (2012). Investigations of the quality of the reclaim of spent moulding sands with organic binders. Archives of Foundry Engineering. 12(3), 13-18. DOI: 10.2478/v10266- 012-0074-1.
  • [9] Huang, N.Y. & Su, G.X., (1988). Investigation of bonding efficiency of chemically bonded sand. AFS Transactions. 96, 109-114.
  • [10] Budavári, I., Gyarmati, G. & Varga, L. (2021). The influence of acid hardener on the strength and hot-distortion properties of no-bake sand cores. International Journal of Metalcasting. 16, 1415-1431. DOI: 10.1007/s40962-021-00700-w.
  • [11] Mroczek, M.J., Wozniak, T.S., Crespo, C.A., (2011). Effects of hot sand and its cure by use of a sand cooler: a case study. AFS Transactions - American Foundry Society. 119, 271-280.
  • [12] Zych, J. (2009). Behavior of chemically-bonded molding sands in dry air. International Journal of Metalcasting. 3, 17- 27. DOI: 10.1007/BF03355445.
  • [13] Lukacek, G.S., et al. (1983). Humidity – It’s effect on no-bake binders. AFS Transactions - American Foundry Society. 91. 455-463.
  • [14] Werling, J.M., Baker, S.G. (2001). Effects of humidity on a phenolic urethane coldbox system. AFS Transactions - American Foundry Society. 865-877.
  • [15] Macho, C., Psimenos, Angelos C. & Eder G. (2007). Heißh€artende harze nach dem warm- und hot-box-verfahren - anforderungen des marktes und aktuelle entwicklungen der fa. Furtenbach GmbH. Giesserei-Rundschau. 54, 2-11.
  • [16] Holtzer, M., Kmita, A. (2020). Heat curing processes. In Mold and core sands in metalcasting: chemistry and ecology. (pp. 205-215). Switzerland: Springer DOI: 10.1007/978-3-030- 53210-9.
  • [17] Brown, J.R. (2000). Foseco ferrous foundryman’s handbook. Chapter 13. Resin bonded sand. Oxford: Butterworth Heinemann, Linacre House, Jordan Hill. 167-203. ISBN 0 7506 4284 X.
  • [18] Flemming, E., Tilsch, W. (1993). Formstoffe und Formverfahren. Kapitel 7. Verfahren mit warm – bzw. heißhärtenden Formstoffen, Deutscher Verlag für Grundstoffindustrie, Leipzig Stuttgart. 333-374. In German
  • [19] Elliot, R. (1988). Cast Iron Technology. Butterworths, London: Butterworth & Co. (Publishers) Ltd. 204-206.
  • [20] Holtzer, M. & Dańko, R. (2015). Molds and cores systems in foundry. In Microstructure and properties of ductile iron and compacted graphite iron castings (pp. 27-42). Springer ChamDOI: 10.1007/978-3-319-14583-9.
  • [21] Beeley P. (2001). Foundry technology. The moulding material: properties, preparation and testing. Oxford: Second Edition Butterworth-Heinemann. 178-238.
  • [22] Kottke, R.H. & Bloomquist, A.E. (1978). A new application for furan foundry binders – The warm-box process. AFS Transactions. 86, 215-220.
  • [23] Major-Gabryś, K. & Dobosz, S.M. (2007). High-temperature expansion and knock-out properties of moulding sands with water glass. Archives of Foundry Engineering. 7(1), 127-130. ISSN (1897-3310).
  • [24] Henry, C., Showman, R. & Wandtke, G. (1999). Core and foundry process variables affecting aluminum casting shakeout of cold box cores, Transactions of American Foundry Society. 107. 99-115.
  • [25] Conev, M., Vaskova, I., Hrubovcakova, M. & Hajduch, P. (2017). Decoring behaviour of chosenmoulding materials with alkali silicate based inorganic binders. Archives of Metallurgy and Materials. 62(2), 703-706. DOI: 10.1515/amm-2017-0105.
  • [26] Dietert, H.W. (1950). Foundry core practice. Core knock out, 2nd ed., Chicago, IL: American Foundrymen’s Society. 473-478.
  • [27] Sue, T. (2019). Mold and Core Test Handbook. fifth edition, AFS Molding Sand, American Foundry Society 127-128. ISBN 978-0-87433-467-8.
  • [28] Brown, J.R., (2000). Foseco Ferrous Foundryman’s Handbook. Chapter 12. Sand and green sand. Oxford Auckland Boston Johannesburg Melbourne New Delhi: Butterworth Heinemann, Linacre House, Jordan Hill. ISBN 0 7506 4284 X.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ff3f055-d3fb-457a-befb-4007b7c2930a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.