PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental investigation of energy dissipation properties of fibre reinforced plastics with hybrid layups under high-velocity impact loads

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The present work deals with the experimental investigation concerning the energy dissipation capacity of different kinds of reinforcement fibres in monolithic and hybrid layups under high velocity impact loads. The investigated kinds of fibres are carbon, glass and basalt. Design/methodology/approach: The test panels have been impregnated with thermoset resin. Curing was done by autoclave processing. In order to obtain comparable fibre volume contents of approx. 60 % in the different layups (monolithic and hybrid without and with separating layer), curing cycles adapted to the type of layup have been identified. The resulting fibre volume content of the test panels has been determined both by weighing and experimentally by chemical extraction and calcination. The impact load was applied by an instrumented experimental setup. Thereby both commercially available bullets and bearing balls accelerated with weighted propellant in a sabot have been used as impactors. The measured values are the velocities of the bearing balls as the impactor before and after penetration of the test panels. Findings: In both cases the results show the energy dissipation capacity of each single kind of fibre in case of the monolithic layups as well as the enhanced properties of the hybrid stacked layups without and with the separating layer as a core material. Typical failure modes on the impact surface and on the outlet areas are identified. Research limitations/implications: The influence of the respective kind of impactors, namely bullets and bearing balls, on the evaluated results is identified. Thereby the bearing balls exhibited a higher degree of reproducibility due to several reasons. Originality/value: Fibre reinforced plastics with hybrid stacking sequences can be used as load-bearing structures and at the same time as safety structures for passengers in automotive or aerospace applications. Moreover, with the hybrid stacked composites lightweight concepts can efficiently be realized regarding energy saving issues.
Rocznik
Strony
5--19
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Laboratory of Composite Technology (LFT), Department of Mechanical Engineering, Ostbayerische Technische Hochschule Regensburg, Galgenbergstrasse 30, 93053 Regensburg, Germany
autor
  • Laboratory of Composite Technology (LFT), Department of Mechanical Engineering, Ostbayerische Technische Hochschule Regensburg, Galgenbergstrasse 30, 93053 Regensburg, Germany
autor
  • Laboratory of Composite Technology (LFT), Department of Mechanical Engineering, Ostbayerische Technische Hochschule Regensburg, Galgenbergstrasse 30, 93053 Regensburg, Germany
autor
  • Laboratory of Ballistics, Arms and Munitions, Department of Mechanical Engineering, University of the Bundeswehr Munich, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
autor
  • Department of Civil Engineering and Environmental Sciences, Institute of Engineering Mechanics and Structural Analysis, University of the Bundeswehr Munich, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
Bibliografia
  • [1] B.M. Fadhel, Numerically Study of Ballistic Impact of Polycarbonate, Proceedings of the International Symposium “Humanities, Science and Engineering Research” SHUSER, Kuala Lumpur, 2011, 101-105.
  • [2] T. Holmquist, G. Johnson, Characterization and evaluation of silicon carbide for high-velocity impact, Journal of Applied Physics 97 (2005) 1-12.
  • [3] T. Holmquist, G. Johnson, Response of silicon carbide to high velocity impact, Journal of Applied Physics 91/9 (2002) 5858-5866.
  • [4] R. Jones, Mechanics of Composite Materials, Taylor & Francis Group, New York, NY, 1999.
  • [5] M. Maier, Experimentelle Untersuchung und numerische Simulation des Crashverhaltens von Faserverbundwerkstoffen. Dissertation, Universität Kaiserslautern, Ludwigshafen, 1990.
  • [6] J. Melo, J. Villena, Effect of fiber volume fraction on the energy absorption capacity of composite materials, Journal of Reinforced Plastics and Composites 31/3 (2012) 153-161.
  • [7] H. Morita, T. Adachi, Y. Tateishi, H. Matsumot, Characterization of impact damage resistance of CF/PEEK and CF/Toughened epoxy laminates under low and high velocity impact tests, Journal of Reinforced Plastics and Composites 16/2 (1997) 131-143.
  • [8] S.S. Morye, P.J. Hine, R.A. Duckett, D.J. Carr, I.M. Ward, Modelling of the energy absorption by polymer composites upon ballistic impact, Composites Science and Technology 60/14 (2000) 2631-2642.
  • [9] R.J. Muhi, F. Najim, M.F.S.F. de Moura, The effect of hybridization on the GFRP behavior under high velocity impact, Composites B 40 (2009) 798-803.
  • [10] Basalt fabric BBK.2/2.345.100.12 – Twill weave 2/2. Technical data sheet, Incotelogy Limited, Pulheim, Germany, 2013.
  • [11] Bearing ball. Technical data sheet, Schaeffler Technologies AG & Co. KG, Herzogenaurach, Germany, 2012.
  • [12] Bullet 9 mm Luger 8.0 g. Technical data sheet, RUAG Ammotec, Fürth, Germany, 2013.
  • [13] Carbon fabric twill weave 2/2. Technical data sheet, ECC – Engineered Cramer Composites, Heek, Germany, 2013.
  • [14] DIN 65561 Luft- und Raumfahrt; Faserverstärkte Kunststoffe, Prüfung von multidirektionalen Laminaten, Bestimmung der Druckfestigkeit nach Schlagbeanspruchung, German standard, Beuth Verlag, Berlin/Heidelberg/New York, 1991.
  • [15] DIN EN ISO 1172 Textilglasverstärkte Kunststoffe; Prepregs, Formmassen und Laminate; Bestimmung des Textilglas- und Mineralfüllstoffgehalts, German standard, Beuth Verlag, Berlin, 1998.
  • [16] DIN EN 2564 Luft- und Raumfahrt; Kohlenstofffaser-Laminate, Bestimmung der Faser-, Harz- und Porenanteile, German standard, Beuth Verlag, Berlin, 1998.
  • [17] Epikote Resin 04572 – Anhydrid 180 °C warm curing epoxy resin. Technical data sheet, Momentive, Columbus, OH, USA, 2011.
  • [18] Epikote Resin 05128 – Medium viscous 120°C bisphenol A epoxy resin. Technical data sheet, Momentive, Columbus, OH, USA, 2010.
  • [19] Glass fabric Interglas Type 92125 – Twill weave 2/2. Technical data sheet, P-D Interglas Technologies GmbH, Erbach, Germany, 2013.
  • [20] Lantor Soric XF. Technical data sheet, Lantor BV, Veenendaal, Netherlands, 2013.
  • [21] Polyoxymethylen (POM). Technical data sheet, Siegle, Augsburg, Germany, 2013.
  • [22] Z. Rosenberg, E. Dekel, Terminal Ballistics. Springer-Verlag, Berlin/Heidelberg/London/New York, 2012.
  • [23] V. Schmid, B. Jungbauer, M. Romano, I. Ehrlich, N. Gebbeken, Diminution of mass of different types of fibre reinforcements due to thermal load, Proceedings of the Applied Research Conference, Nürnberg, 2012, in: J. Mottok, O. Ziemann, (Eds.), Applied Research Conference 2012 – ARC 2012, Shaker Verlag, Aachen/Herzogenrath, 2012, 231-235.
  • [24] H. Schürmann, Konstruieren mit Faser-Kunststoff-Verbunden, Springer-Verlag, Berlin/Heidelberg, 2005.
  • [25] E. Witten, Handbuch Faserverbundkunststoffe, Grundlagen Verarbeitung Anwendungen, GWV Fachverlag, Wiesbaden, 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4fef293d-10d1-4730-9e9c-b33c916090e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.