Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper a solution to the free vibration problem of composite circular and annular membranes is presented. The vibrations of membranes whose material densities and/or thicknesses varied step-wise with the radial co-ordinate are considered. This approach is applied to approximate the solution to the vibration problem of a membrane with continuously varying density and/or thickness with the radial co-ordinate. The obtained analytical solutions are used in numerical investigations into the effect of parameters characterizing the composite membranes on their eigenfrequencies.
Rocznik
Tom
Strony
149--159
Opis fizyczny
Bibliogr. 11 poz., rys., tab.
Twórcy
autor
- Institute of Mathematics, Czestochowa University of Technology Częstochowa, Poland
autor
- Institute of Mathematics, Czestochowa University of Technology Częstochowa, Poland
autor
- Institute of Mathematics, Czestochowa University of Technology Częstochowa, Poland
Bibliografia
- [1] Laura P.A.A., Rossit C.A., La Malfa S., Transverse vibrations of composite, circular annular membranes: exact solution, Journal of Sound and Vibration 1998, 216(1), 190-193.
- [2] Gottlieb H.P.W., Exact solutions for vibrations of some annular membranes with inhomogeneous radial densities, Journal of Sound and Vibration 2000, 223(1), 165-170.
- [3] Jabareen M., Eisenberger M., Free vibrations of non-homogeneous circular and annular membranes, Journal of Sound and Vibration 2001, 240(3), 409-429.
- [4] Cap F.F., Eigenfrequencies of membranes of arbitrary boundary and with varying surface mass density, Applied Mathematics and Computation 2001, 124, 319-329.
- [5] Gutierrez A.A., Laura P.A.A., Bambill D.V., Jederlinic V.A., Hodges D.H., Axisymmetric vibrations of solid circular and annular membranes with continuously varying density, Journal of Sound and Vibration 1998, 212(4), 611-622.
- [6] Wei-Peng H., Zi-Chen D., Wen-Cheng L., Multi-symplectic methods for membrane free vibration equation, Applied Mathematics and Mechanics 2007, 28(9), 1181-1189.
- [7] Civalek Ö., Gürses M., Discrete singular convolution for free vibration analysis annular membranes, Mathematical and Computational Applications 2009, 14(2), 131-138.
- [8] Reutskiy S.Y., The methods of external and internal excitation for problems of free vibrations of non-homogeneous membranes, Engineering Analysis with Boundary Elements 2007, 31, 906-918.
- [9] Buchanan G.R., Vibration of circular membranes with linearly varying density along a diameter, Journal of Sound and Vibration 2005, 280, 407-414.
- [10] Zamorska I., Kukla S., Siedlecka U., Frequency analysis of composite annular membranes, Scientific Research of the Institute of Mathematics and Computer Science 2012, 11(1), 129-135.
- [11] Dahlquist G., Björck A., Numerical Methods in Scientific Computing, Society for Industrial and Applied Mathematics, Philadelphia 2008.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4fe7aa44-1785-4b2c-832d-58abcd9c93b4