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Abstract. In this paper a solution to the free vibration problem of composite circular and
annular membranes is presented. The vibrations of membranes whose material densities
and/or thicknesses varied step-wise with the radial co-ordinate are considered. This approach
is applied to approximate the solution to the vibration problem of a membrane with continu-
ously varying density and/or thickness with the radial co-ordinate. The obtained analytical
solutions are used in numerical investigations into the effect of parameters characterizing
the composite membranes on their eigenfrequencies.
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1. Introduction

The vibration analysis of membranes is of particular interest in the design of
various acoustical devices. The solution to the vibration problem of a non-
homogenous membrane in a closed form can be derived only for the cases of some
functions describing the change in the material density and thickness of this mem-
brane. Free vibration problems of circular and annular membranes when the den-
sity varies with the radial co-ordinate are the subject of papers [1-5]. The solution
to the vibration problem of a membrane comprising two concentric annular mem-
branes has been derived in an exact form by Laura et al. in paper [1]. Gottlieb [2]
gives the explicit values of the radial spectrum of an annular membrane with
a stepped density which contains inverse fourth power logarithmic terms in the
density function. The exact solutions to both the axisymmetric and antisymmetric
modes of non-homogenous circular and annular membranes with polynomial
variation of the density are given by Jabareen and Eisenberger in paper [3].
The eigenfrequencies for variable density membranes are obtained by a power
series expansion and for multiple-connected regions by the dynamic stiffness
method.

Approximate methods have been applied to solve the vibration problems of
non-homogeneous membranes in numerous papers (for example in references [4-9]
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various approximate methods are used). An application of the boundary point
collocation method to determine the eigenfrequencies of membranes with varying
mass density is presented by Cap in paper [4]. Gutierrez et al. [5] present numerical
results for two lower free vibration frequencies of circular and annular membranes
whose densities varied linearly, quadratically or cubically with the radial coordi-
nate. The frequencies were calculated by using the differential quadrature method,
the finite element technique, an optimized and/or improved Rayleigh quotient
method and a lower bound based on the Stodola-Vianello method. The multi-
symplectic methods for free vibration of the membrane are proposed by Wei-Peng
et al. in paper [6]. Numerical results presented in the paper verify the efficiency of
the methods. The free vibration frequencies of an annular membrane for axisym-
metric modes by the discrete singular convolution method, based on the regularized
Shannon’s delta kernel, were determined by Civalek and Giirses in reference [7].
The numerical technique for problems of free vibrations of non-homogenous mem-
branes is presented by Reutskiy in paper [8]. The method is based on the mathe-
matical modeling of the response of a system to external excitation over a range of
frequencies. Buchanan [9] has studied vibrational properties and has demonstrated
the accuracy of finite element formulation for circular and annular membranes
with density variation assumed as a linear function of the radius. The free vibration
of an annular membrane consisting of three concentric annular membranes was
considered in the paper [10]. The solution of the problem has been derived by using
the properties of Green’s functions.

In this paper, a solution to the free vibration problem of composite circular
and annular membranes whose densities and/or thicknesses varied step-wise with
the radial co-ordinate is derived. This approach has been applied for numerical
computation of eigenfrequencies of membranes with a continuous change in density
and thickness in the radial direction.

2. Formulation and solution to the free vibration problem
of a composite membrane

Consider the vibration problem of an annular composite membrane consisting
of m annular homogenous membranes as shown in Figure 1. The thickness and
the material density of the composite membrane change step-wise at circles with
radii #,7,,...,7,_,. The j-th annular membrane includes an elastic support distribut-

ed along the circle r =7, where 7 €[r;_;,7;).

Free vibrations of the homogenous annular membranes with an elastic support
are governed by the following differential equations:

5 azuj _
sViu,—ph; Py =0, j=12,....m @)
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where u; is the displacement of the j-th annular membrane, s is the tension per

unit length, p; is the mass per unit area, h; is the thickness of the j-th annular
o 1o 19
ot ror r* oo
coordinates and ¢ is time. The radial variable » for the j-th annular membrane is

in the interval: 7, , <r<r;, j=1,2,..,m, where r, =a, r, =b.

membrane, V> = is the Laplacian operator, » and & are polar

Fig. 1. The sketch of the composite annular membrane under study

Functions u; (j=1,2,...,m) satisty the continuity conditions

uj(rj,e,t)zujﬂ(rj,e,t), j=12,...,.m-1 2)
auj(r,ﬁ,t)| _ Guj+1(r,€,t)| i=l2eme 3)
or L or .
J J
and the boundary conditions
ul(r'O’g’t)zoa um(rmaavt):() (4)

Considering the free vibration of the membrane we assume functions u ; (r,@,t)
in the form

u,(r,0,t)=U,,(r)cosw,tcosnd, j=1,2,..m, n=0,1,2,... %)

where @, is the natural frequency of the composite membrane. Taking equation
(6) into account in differential equation (1), in continuity conditions (3)-(4) and
in boundary conditions (5), we obtain a differential equation, continuity conditions
and boundary conditions for functions U, (r):
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ld( d .
{;E(rEjJrﬂfn}an(r):O for r, <r<r, j=12,..m (6)
Uin(r)=Usa (7)), G=1200m=1 (7)
dUu dUu
w4V ()| j=12am—1 (®)
dr dr
r=ry r=r;
Uln(FO)zo’ Umn(rm):O (9)

where 4, =, p;h; /s .
The general solution of the differential equation (7) is given by

an(r)=CljJ0(/1jnr)+C2jYO(/1jnr) for re[r r},jzl,Z,...,m (10)

J=1 0

where C,; and C,; are arbitrary constants. Substituting the functions (10) into

conditions (7)-(9), we obtain a set of 2m equations which can be written in
a matrix form

AC=0 (11)

where Az[aqu ,and C=[C,, G, ... C CZm]T. For 7, >0 (an annular

0<p,g<2m Lm

membrane) the non-zero elements of the matrix A are (index # is omitted)
a;, =J, (21’”0) > A = Yo(ﬂq’”o) > Ayjnj-1 :‘]O(ﬂ’jrj) > Ay = Y()(ﬂ’jrj) >
@120 = Yo (i_/url’”_/ ) s Ui =Y (/1,41”,‘ ) s @y =J (;L_/’”_/ ) —-J (/1_/”,‘) ’

A
Gz =Y (;Lj”_/ ) -4 (j’jrj ) » yjat2jel = _/ft_fl['jfl (;L_/Jrl’”j ) = (;L_/Jrl’”j )] )
J

A,
_ j+1
D jsizje2 = _TJ[Y—l (/Ij+1’”j ) -1 (/1/41’”; )]
for j=1,..,m—1 and
a2m,2m—l = JO (imrm ) H a2m,2m = YO (j’mrm ) .
For a nontrivial solution of the equation (11) the determinant of the matrix A
is set equal to zero yielding the frequency equation of the composite membrane

det(A(w))=0 (12)
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The equation (12) is then solved numerically with respect to @ by using an approxi-
mate method. Note that for a fixed » we obtain a sequence o,,, k=0,1,..., of the

roots of the equation (12).
The frequency equation for a circular membrane (7, =0) is obtained similarly.

In this case, the first row in the matrix A for the annular membrane should
be changed by assuming: a,, =0, a,, =1. The remainder elements of the matrix A
for the circular membrane are the same as for annular membrane.

For the computed values /1jk =, ‘/p_/hj/s , k=12,..., the corresponding
eigenfunctions (the mode shapes of vibration) are given by equation (10) where
the coefficients C;, C,; are determined by solving equation (11), in which
C,,, =1 should be assumed. The eigenfunctions satisfied the following orthogonal-
ity conditions

r
m

7 0 k=K'
W5 f rU_,k.,,(r)U_,kn(r)dr={Nlm k#k' (1

./=1 ’j—l

7

where 1, =/p;h; /s and
m J

Ny, =20} [ U3, (r)dr (14)

Jj=1 rj-1

3. Forced vibration of a composite membrane

The differential equation to vibration of an annular membrane forced by an outer
force is
u. 1 .
Vz”j_/”/z‘ 61‘2] zgfj(’”,ig,l‘), j=L2,...,m (15)

The functions u; (j=1,2,...,m) satisfy the continuity conditions (2)-(3) and

the boundary conditions (4). Moreover, the initial conditions are
uj(r,H,O)zpj(r,Q) (16)

8uj (r,H,t)

5| =4 (17)

t=0
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We seek a solution of the problem in the form of a series

0

(r,0.6)=>">"U 1, (r)T, (t)cosnd (18)
n=0 k=1
where U, (r) were derived in Section 2 (equation (10)) and functions I',, (t) will
be now determined.
Substituting the function u,(r,0,¢) in the form (18) into equation (15) and

using the orthogonality condition (13), we obtain an equation with unknown
functions I, (¢) in the form

dz
pratt () + @, T, (t)=F, () (19)
where F, (¢ =N . ZIMI rU s f (7,60,t)cosnfdrd® and x, =27, k, =7
kn™n j=1

for n=1,2,.... This equation is complemented by initial conditions which follow

from (16) and (17). Using (18) and (13) one obtains the initial conditions in the
form

m 2 Ty
r,(0)= ]1\7 2/1/2_[ J. rU ., (r)p; (r,0)cosnfdrdo (20)

KtV gy j=1 0 1y

dr 1 m 2 Ty
2 7| | rUs(r)a;(r.0)cosnddrdo 21
dt |, N, ;ﬂjlj rU ., (r)q; (r,0)cos nfdr o)

J
Fkn(t)—cosa)"” J. IrU,m r)p;(r,0)cosnbdrdd
KN, “~ H; e J J
27 Ty
sma),mt 2
U 0 Odrd0 22
K Nkna)lm / =1 j ‘(').rjjllr jkn )q/ (r )Cosn " ( )
1 m 2% it
- rU ., (r)f(r,0,7)sinw, (t —7)cosn@drdrdd
o] [0 (rr)sinan 1=)

Finally, the solution of the forced vibration problem of the composite membrane
can be written in the form



Vibration analysis of composite circular and annular membranes 155

27 T ’ i ' 01
" (~.6") U s (#')U 3y ()08 nOcos n0 cos @t dr'd’

© m 27 17 o ' ( r
r'g.(r',0 .
+ 7 / ) tn (F)U 4 () cO8 0O cOs n'sin a,, t dr'd 6’
j N Jj'kn Jkn kn
n=0 j'=1 0 ry k=1 Ky N 15y Oy
-
27 it ( r
r,Q,T)

(r')U 4, (r)cosnBsin e, (t — v)cosnd'drdr'd 6’

(23)

4. Numerical examples

The numerical computations presented here concern the frequency analysis of
composite annular and circular membranes for various values of parameters which
characterize their non-uniformity. The calculations of the non-dimensional free
vibration frequencies were performed using frequency equation (12). The roots of
this equation were determined by the application of the false position method [11].

In the first example, the eigenfrequencies of circular and annular membrane

were computed with the density function given by the formula: p(r)= p,(1+ar).
The results of calculations: Q,, =®,, b\/p,h, /s (n=0,1,2,3;k=1,2,3,4,5) for

various values of « and various numbers of annular membranes m are shown
in Table 1 - for the annular membrane and in Table 2 - for the circular membrane.
The eigenfrequencies for these membranes were determined earlier by using
the power series method in paper [3] by Jabareen and Eisenberger. The results
for m=10,15,20, obtained by using the presented method, are compared with
the results given in reference [3]. The calculated free vibration frequencies Q,, are
consistent for both annular (Table 1) and circular (Table 2) membranes for m = 20
and those presented in reference [3]. The differences do not exceed 5-107 for k=1
and 3-107 for k =5. Moreover, it can be shown that the differences decrease as the
number of annular membranes m is increased.

The frequencies of the circular composite membrane of radius b, consisting
of three parts (a circular inner membrane and two annular membranes) as functions
of the ratio 7 /b, are presented in Figure 2 for n=0. The material density of the
inner annular membrane is much greater than the density of the other parts of the
membrane, i.e. p, =p,, and p << p,. The calculations were performed for:

o=p,/p =2;5;10;15; 20; 30 and (r, —rl)/b=0.01. Figure 2 shows that both

the material density (or membrane thickness) and the location of the inner annular
membrane cause significant changes in the eigenfrequencies of the composite
membrane.
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Table 1
Values of Q,, for an annular membrane, a/b=0.2; p(r)=p,(1+ar)
a=1.0 a=2.0
m m
Ref[3] Ref[3]
10 15 20 10 15 20

3.0156 3.0156 3.0156 3.0156 2.5691 2.5691 2.5691 2.5691

=)

6.1639 6.1640 6.1640 6.1640 5.2653 5.2654 5.2654 | 5.2654

=)
D)

9.2537 | 9.2937 9.2937 9.2937 7.9442 7.9442 7.9443 7.9443

=)
@

12.4161 | 12.4163 | 12.4163 | 12.4163 | 10.6161 | 10.6163 | 10.6164 | 10.6164

(=)
B

15.5350 | 15.5354 | 15.5354 | 15.5354 | 13.2845 | 13.2851 | 13.2852 | 13.2852

=)
by

3.3349 3.3349 3.3349 3.3349 2.8360 2.8360 2.8360 2.8360

6.3801 6.3801 6.3802 6.3802 5.4503 5.4504 5.4504 5.4504

¥

9.4532 9.4532 9.4532 9.4532 8.0825 8.0826 8.0826 8.0826

w

12.5414 | 12.5415 | 12.5416 | 12.5416 | 10.7255 | 10.7258 | 10.7258 | 10.7259

=

15.6377 | 15.6381 | 15.6381 | 15.6381 | 13.3746 | 13.3753 | 13.3753 | 13.3754

4.0734 4.0734 4.0734 4.0734 3.4492 3.4492 3.4492 3.4492

)

6.9718 6.9718 6.9718 6.9718 5.9526 5.9526 5.9526 5.9526

)
(¥

9.9155 9.9156 9.9156 9.9156 8.4816 8.4817 8.4817 8.4817

™)
@

12.9120 | 129122 | 129122 | 129123 | 11.0488 | 11.0491 | 11.0492 | 11.0492

)
=

15.9440 | 15.9444 | 159445 | 15.9445 | 13.6434 | 13.6441 | 13.6442 | 13.6443

)
[

4.9359 | 4.9359 | 4.9359 | 4.9359 4.1603 4.1603 4.1603 4.1603

w

7.7955 7.7956 7.7956 7.7956 6.6424 6.6424 6.6425 6.6425

[
D)

10.6269 | 10.6271 | 10.6271 | 10.6271 | 9.0889 | 9.0891 9.0892 9.0892

w
@

13.5092 | 13.5095 | 13.5095 | 13.5096 | 11.5663 | 11.5668 | 11.5669 | 11.5669

)
=

ORI PIRPIPIPIRPIRP|RPIQIQRPIP|0RPID0|Q[Q0|0|0

16.4474 | 16.4480 | 16.4481 | 16.4481 | 14.0838 | 14.0848 | 14.0850 | 14.0850

w
<
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Table 2
Values of Q,, for a circular membrane, p(r)=p,(1+ar)
a=1.0 a=2.0
m m
Ref [3] Ref [3]
10 15 20 10 15 20

=)

2.0108 2.0108 2.0108 2.0108 1.7598 1.7598 1.7598 1.7598

=)
D)

4.5548 4.5549 4.5549 4.5549 3.9802 3.9802 3.9802 3.9802

=)
@

7.1194 7.1195 7.1196 7.1196 6.2147 6.2149 6.2150 6.2150

(=)
B

9.6897 9.6900 9.6901 9.6901 8.4537 8.4542 8.4543 8.4543

=)
b

12.2622 | 12.2629 | 12.2631 | 12.2631 | 10.6943 | 10.6956 | 10.6957 | 10.6958

3.0678 3.0678 3.0678 3.0678 2.6273 2.6273 2.6273 2.6273

)

5.6990 5.6991 5.6991 5.6991 4.9267 4.9268 4.9268 4.9268

w

8.3004 8.3006 8.3006 8.3006 7.1990 7.1993 7.1993 7.1994

=

10.8914 | 10.8919 | 10.8920 | 10.8920 | 9.4608 9.4616 9.4617 9.4618

[

13.4773 | 13.4785 | 13.4786 | 13.4787 | 11.7170 | 11.7188 | 11.7191 | 11.7192

)

4.0223 4.0223 4.0224 4.0224 3.4110 3.4110 3.4110 3.4110

)
[S)

6.7453 6.7454 6.7454 6.7454 5.7872 5.7874 5.7874 5.7874

™)
@

9.3940 9.3943 9.3944 9.3944 8.1011 8.1015 8.1016 8.1016

)
=

12.0150 | 12.0157 | 12.0158 | 12.0159 | 10.3905 | 10.3916 | 10.3918 | 10.3919

)
[

14.6217 | 14.6234 | 14.6236 | 14.6236 | 12.6665 | 12.6691 | 12.6694 | 12.6696

w

4.9283 4.9283 4.9284 4.9284 4.1549 4.1549 4.1550 4.1550

w
]

7.7381 7.7383 7.7383 7.7383 6.6029 6.6031 6.6032 6.6032

w
@

10.4357 | 10.4362 | 10.4362 | 10.4363 | 8.9581 8.9587 8.9588 8.9588

)
=

13.0894 | 13.0904 | 13.0906 | 13.0906 | 11.2758 | 11.2774 | 11.2776 | 11.2776

ANl Nl ol Nol NelReNNoNRoNReN el ol ol el el Iel el el el e

)
by

15.7197 | 15.7220 | 15.7223 | 15.7224 | 13.5726 | 13.5763 | 13.5767 | 13.5768
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Fig. 2. Four free vibration frequencies Q,, of the circular composite membrane
consisting of three segments for 7 = 0, as functions of the ratio 7 /b

for various o and (r,—#)/b=0.01
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5. Conclusions

In this paper, a solution to the free vibration problem of annular and circular
composite membranes has been derived. Numerical analysis has shown the effect
of parameters characterizing the composite annular or circular membranes on their
eigenfrequencies. The frequency analysis was performed for a circular membrane
with an inner highlighted annular membrane whose material density (or thickness)
is much greater than the material density (or thickness) of the remaining part of the
membrane. The numerical results show that the location of the highlighted annular
membrane has a significant effect on eigenfrequencies of the composite membrane.
It follows that the application of this annular membrane can be used to introduce
a specific change in the dynamical characteristic of the composite membrane.
Numerical examples show that the presented method can be used to determine
approximate natural frequencies of composite membranes with continuously
varying densities or thicknesses.
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