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Abstract. In this paper a solution to the free vibration problem of composite circular and 
annular membranes is presented. The vibrations of membranes whose material densities 
and/or thicknesses varied step-wise with the radial co-ordinate are considered. This approach 
is applied to approximate the solution to the vibration problem of a membrane with continu- 
ously varying density and/or thickness with the radial co-ordinate. The obtained analytical 
solutions are used in numerical investigations into the effect of parameters characterizing 
the composite membranes on their eigenfrequencies. 
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1. Introduction 

The vibration analysis of membranes is of particular interest in the design of 
various acoustical devices. The solution to the vibration problem of a non-
homogenous membrane in a closed form can be derived only for the cases of some 
functions describing the change in the material density and thickness of this mem-
brane. Free vibration problems of circular and annular membranes when the den-
sity varies with the radial co-ordinate are the subject of papers [1-5]. The solution 
to the vibration problem of a membrane comprising two concentric annular mem-
branes has been derived in an exact form by Laura et al. in paper [1]. Gottlieb [2] 
gives the explicit values of the radial spectrum of an annular membrane with 
a stepped density which contains inverse fourth power logarithmic terms in the 
density function. The exact solutions to both the axisymmetric and antisymmetric 
modes of non-homogenous circular and annular membranes with polynomial 
variation of the density are given by Jabareen and Eisenberger in paper [3]. 
The eigenfrequencies for variable density membranes are obtained by a power 
series expansion and for multiple-connected regions by the dynamic stiffness 
method. 

Approximate methods have been applied to solve the vibration problems of 
non-homogeneous membranes in numerous papers (for example in references [4-9] 
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various approximate methods are used). An application of the boundary point 
collocation method to determine the eigenfrequencies of membranes with varying 
mass density is presented by Cap in paper [4]. Gutierrez et al. [5] present numerical 
results for two lower free vibration frequencies of circular and annular membranes 
whose densities varied linearly, quadratically or cubically with the radial coordi-
nate. The frequencies were calculated by using the differential quadrature method, 
the finite element technique, an optimized and/or improved Rayleigh quotient 
method and a lower bound based on the Stodola-Vianello method. The multi-
symplectic methods for free vibration of the membrane are proposed by Wei-Peng 
et al. in paper [6]. Numerical results presented in the paper verify the efficiency of 
the methods. The free vibration frequencies of an annular membrane for axisym-
metric modes by the discrete singular convolution method, based on the regularized 
Shannon’s delta kernel, were determined by Civalek and Gürses in reference [7]. 
The numerical technique for problems of free vibrations of non-homogenous mem-
branes is presented by Reutskiy in paper [8]. The method is based on the mathe-
matical modeling of the response of a system to external excitation over a range of 
frequencies. Buchanan [9] has studied vibrational properties and has demonstrated 
the accuracy of finite element formulation for circular and annular membranes 
with density variation assumed as a linear function of the radius. The free vibration 
of an annular membrane consisting of three concentric annular membranes was 
considered in the paper [10]. The solution of the problem has been derived by using 
the properties of Green’s functions. 

In this paper, a solution to the free vibration problem of composite circular 
and annular membranes whose densities and/or thicknesses varied step-wise with 
the radial co-ordinate is derived. This approach has been applied for numerical 
computation of eigenfrequencies of membranes with a continuous change in density 
and thickness in the radial direction. 

2. Formulation and solution to the free vibration problem 

of a composite membrane 

Consider the vibration problem of an annular composite membrane consisting 
of m annular homogenous membranes as shown in Figure 1. The thickness and 
the material density of the composite membrane change step-wise at circles with 
radii 1 2 1, , , mr r r −… . The j-th annular membrane includes an elastic support distribut-

ed along the circle r r= , where 1[ , )j jr r r−∈ .  

Free vibrations of the homogenous annular membranes with an elastic support 
are governed by the following differential equations: 
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where ju  is the displacement of the j-th annular membrane, s  is the tension per 

unit length, jρ  is the mass per unit area, jh  is the thickness of the j-th annular 

membrane, 
2 2

2
2 2 2

1 1

r rr r θ
∂ ∂ ∂

∇ = + +
∂∂ ∂

 is the Laplacian operator, r  and θ  are polar 

coordinates and t  is time. The radial variable r  for the j-th annular membrane is 
in the interval: 1j jr r r− ≤ ≤ , 1,2,...,j m= , where 0r a= , mr b= . 

 

 
Fig. 1. The sketch of the composite annular membrane under study 

Functions ju  ( 1,2,..., )j m=  satisfy the continuity conditions 

 ( ) ( )1, , , ,j j j ju r t u r tθ θ+= , 1,2,..., 1j m= −   (2) 
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j j

j j

r r r r
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= =

∂ ∂
=

∂ ∂
, 1,2,..., 1j m= −   (3) 

and the boundary conditions 

 ( )1 0 , , 0u r tθ = , ( ), , 0m mu r tθ =   (4) 

Considering the free vibration of the membrane we assume functions ( ), ,ju r tθ  

in the form 

 ( ) ( ), , cos cosj j n nu r t U r t nθ ω θ= , 1,2,...,j m= , 0,1,2,...n =   (5) 

where nω  is the natural frequency of the composite membrane. Taking equation 

(6) into account in differential equation (1), in continuity conditions (3)-(4) and 
 

in boundary conditions (5), we obtain a differential equation, continuity conditions 

and boundary conditions for functions ( )j nU r : 



U. Siedlecka, I. Zamorska, S. Kukla 152

 ( )21
0j n j n

d d
r U r

r dr dr
λ

   + =  
  

  for  1j jr r r− ≤ ≤ , 1,2,...,j m=   (6) 

 ( ) ( )1j n j j n jU r U r+= ,    1,2,..., 1j m= −   (7) 

 
( ) ( )1

j j

j n j n

r r r r

dU r dU r

dr dr

+

= =

= ,    1,2,..., 1j m= −   (8) 

 ( ) ( )1 0 0, 0n mn mU r U r= =   (9) 

where j n n j jh sλ ω ρ= . 

The general solution of the differential equation (7) is given by 

 ( ) ( ) ( )1 0 2 0j n j j n j j nU r C J r C Y rλ λ= +    for   1,j jr r r− ∈  , 1,2,...,j m=  (10) 

where 1 jC  and 2 jC  are arbitrary constants. Substituting the functions (10) into 

conditions (7)-(9), we obtain a set of 2m  equations which can be written in 
a matrix form 

 AC 0=   (11) 

where 
0 , 2p q

p q m
a

≤ ≤
 =  A , and [ ]11 21 1 2...

T

m mC C C C=C . For 0 0r >  (an annular 

membrane) the non-zero elements of the matrix A are (index n is omitted) 

( )11 0 1 0a J rλ= , ( )12 0 1 0a Y rλ= , ( )2 ,2 1 0j j j ja J rλ− = , ( )2 ,2 0j j j ja Y rλ= ,  

( )2 1,2 1 0 1j j j ja J rλ+ + += − , ( )2 ,2 2 0 1j j j ja Y rλ+ += − , ( ) ( )2 1,2 1 1 1j j j j j ja J r J rλ λ+ − −= − ,  

( ) ( )2 1,2 1 1j j j j j ja Y r Y rλ λ+ −= − , ( ) ( )1
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for 1,..., 1j m= −  and  

( )2 ,2 1 0m m m ma J rλ− = ,   ( )2 ,2 0m m m ma Y rλ= . 

For a nontrivial solution of the equation (11) the determinant of the matrix A 

is set equal to zero yielding the frequency equation of the composite membrane 

 ( )( )det A 0ω =   (12) 
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The equation (12) is then solved numerically with respect to ω  by using an approxi- 
mate method. Note that for a fixed n  we obtain a sequence knω , 0,1,...k = , of the 

roots of the equation (12). 
The frequency equation for a circular membrane ( 0 0r = ) is obtained similarly. 

In this case, the first row in the matrix A for the annular membrane should 
be changed by assuming:  11 0a = , 12 1a = . The remainder elements of the matrix A 

for the circular membrane are the same as for annular membrane. 

For the computed values j k k j jh sλ ω ρ= , 1,2,k = … , the corresponding 

eigenfunctions (the mode shapes of vibration) are given by equation (10) where 
the coefficients 1 jC , 2 jC  are determined by solving equation (11), in which 

2 1mC =  should be assumed. The eigenfunctions satisfied the following orthogonal-

ity conditions 
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where j j jh sµ ρ=  and   
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3. Forced vibration of a composite membrane 

The differential equation to vibration of an annular membrane forced by an outer 
force is 
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The functions ju  ( 1,2,..., )j m=  satisfy the continuity conditions (2)-(3) and 

the boundary conditions (4). Moreover, the initial conditions are 

 ( ) ( ), ,0 ,j ju r p rθ θ=  (16) 
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We seek a solution of the problem in the form of a series 

 ( ) ( ) ( )
0 1

, , cosj jk n kn

n k

u r t U r t nθ θ
∞ ∞

= =

= Γ∑∑   (18) 

where ( )j k nU r  were derived in Section 2 (equation (10)) and functions ( )kn tΓ will 

be now determined. 

Substituting the function ( ), ,ju r tθ  in the form (18) into equation (15) and 

using the orthogonality condition (13), we obtain an equation with unknown 

functions ( )kn tΓ  in the form 

 ( ) ( ) ( )
2
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for 1,2,n = … . This equation is complemented by initial conditions which follow 
from (16) and (17). Using (18) and (13) one obtains the initial conditions in the 
form 
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The solution of the equation (19) with conditions (20), (21) is as follows: 
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Finally, the solution of the forced vibration problem of the composite membrane 
can be written in the form 
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4. Numerical examples 

The numerical computations presented here concern the frequency analysis of 
composite annular and circular membranes for various values of parameters which 
characterize their non-uniformity. The calculations of the non-dimensional free 
vibration frequencies were performed using frequency equation (12). The roots of 
this equation were determined by the application of the false position method [11]. 

In the first example, the eigenfrequencies of circular and annular membrane 

were computed with the density function given by the formula: ( ) ( )0 1r rρ ρ α= + . 

The results of calculations: /nk kn m mb h sω ρΩ =  ( 0,1,2,3n = ; 1,2,3,4,5k = ) for 

various values of α  and various numbers of annular membranes m  are shown 
in Table 1 - for the annular membrane and in Table 2 - for the circular membrane. 
The eigenfrequencies for these membranes were determined earlier by using 
the power series method in paper [3] by Jabareen and Eisenberger. The results 
for 10,15,20m = , obtained by using the presented method, are compared with 

the results given in reference [3]. The calculated free vibration frequencies nkΩ  are 

consistent for both annular (Table 1) and circular (Table 2) membranes for 20m =  
and those presented in reference [3]. The differences do not exceed 5·10–4 for 1k =  
and 3·10–2 for 5k = . Moreover, it can be shown that the differences decrease as the 
number of annular membranes m  is increased. 

The frequencies of the circular composite membrane of radius ,b  consisting 
of three parts (a circular inner membrane and two annular membranes) as functions 
of the ratio 1r b , are presented in Figure 2 for 0.n =  The material density of the 

inner annular membrane is much greater than the density of the other parts of the 
membrane, i.e. 1 3ρ ρ= , and 1 2ρ ρ<< . The calculations were performed for: 

2 1 2; 5; 10; 15; 20; 30σ ρ ρ= =  and ( )2 1 0.01.r r b− =  Figure 2 shows that both 

the material density (or membrane thickness) and the location of the inner annular 
membrane cause significant changes in the eigenfrequencies of the composite 
membrane. 
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Table 1 

Values of nkΩ  for an annular membrane, 0.2;a b = ( ) ( )0 1r rρ ρ α= +  

 

α = 1.0 α = 2.0 

m 

Ref [3] 
m 

Ref [3] 

10 15 20 10 15 20 

Ω01 3.0156 3.0156 3.0156 3.0156 2.5691 2.5691 2.5691 2.5691 

Ω02 6.1639 6.1640 6.1640 6.1640 5.2653 5.2654 5.2654 5.2654 

Ω03 9.2537 9.2937 9.2937 9.2937 7.9442 7.9442 7.9443 7.9443 

Ω04 12.4161 12.4163 12.4163 12.4163 10.6161 10.6163 10.6164 10.6164 

Ω05 15.5350 15.5354 15.5354 15.5354 13.2845 13.2851 13.2852 13.2852 

Ω11 3.3349 3.3349 3.3349 3.3349 2.8360 2.8360 2.8360 2.8360 

Ω12 6.3801 6.3801 6.3802 6.3802 5.4503 5.4504 5.4504 5.4504 

Ω13 9.4532 9.4532 9.4532 9.4532 8.0825 8.0826 8.0826 8.0826 

Ω14 12.5414 12.5415 12.5416 12.5416 10.7255 10.7258 10.7258 10.7259 

Ω15 15.6377 15.6381 15.6381 15.6381 13.3746 13.3753 13.3753 13.3754 

Ω21 4.0734 4.0734 4.0734 4.0734 3.4492 3.4492 3.4492 3.4492 

Ω22 6.9718 6.9718 6.9718 6.9718 5.9526 5.9526 5.9526 5.9526 

Ω23 9.9155 9.9156 9.9156 9.9156 8.4816 8.4817 8.4817 8.4817 

Ω24 12.9120 12.9122 12.9122 12.9123 11.0488 11.0491 11.0492 11.0492 

Ω25 15.9440 15.9444 15.9445 15.9445 13.6434 13.6441 13.6442 13.6443 

Ω31 4.9359 4.9359 4.9359 4.9359 4.1603 4.1603 4.1603 4.1603 

Ω32 7.7955 7.7956 7.7956 7.7956 6.6424 6.6424 6.6425 6.6425 

Ω33 10.6269 10.6271 10.6271 10.6271 9.0889 9.0891 9.0892 9.0892 

Ω34 13.5092 13.5095 13.5095 13.5096 11.5663 11.5668 11.5669 11.5669 

Ω35 16.4474 16.4480 16.4481 16.4481 14.0838 14.0848 14.0850 14.0850 
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Table 2 

Values of nkΩ  for a circular membrane, ( ) ( )0 1r rρ ρ α= +  

 

α = 1.0 α = 2.0 

m 

Ref [3] 
m 

Ref [3] 

10 15 20 10 15 20 

Ω01 2.0108 2.0108 2.0108 2.0108 1.7598 1.7598 1.7598 1.7598 

Ω02 4.5548 4.5549 4.5549 4.5549 3.9802 3.9802 3.9802 3.9802 

Ω03 7.1194 7.1195 7.1196 7.1196 6.2147 6.2149 6.2150 6.2150 

Ω04 9.6897 9.6900 9.6901 9.6901 8.4537 8.4542 8.4543 8.4543 

Ω05 12.2622 12.2629 12.2631 12.2631 10.6943 10.6956 10.6957 10.6958 

Ω11 3.0678 3.0678 3.0678 3.0678 2.6273 2.6273 2.6273 2.6273 

Ω12 5.6990 5.6991 5.6991 5.6991 4.9267 4.9268 4.9268 4.9268 

Ω13 8.3004 8.3006 8.3006 8.3006 7.1990 7.1993 7.1993 7.1994 

Ω14 10.8914 10.8919 10.8920 10.8920 9.4608 9.4616 9.4617 9.4618 

Ω15 13.4773 13.4785 13.4786 13.4787 11.7170 11.7188 11.7191 11.7192 

Ω21 4.0223 4.0223 4.0224 4.0224 3.4110 3.4110 3.4110 3.4110 

Ω22 6.7453 6.7454 6.7454 6.7454 5.7872 5.7874 5.7874 5.7874 

Ω23 9.3940 9.3943 9.3944 9.3944 8.1011 8.1015 8.1016 8.1016 

Ω24 12.0150 12.0157 12.0158 12.0159 10.3905 10.3916 10.3918 10.3919 

Ω25 14.6217 14.6234 14.6236 14.6236 12.6665 12.6691 12.6694 12.6696 

Ω31 4.9283 4.9283 4.9284 4.9284 4.1549 4.1549 4.1550 4.1550 

Ω32 7.7381 7.7383 7.7383 7.7383 6.6029 6.6031 6.6032 6.6032 

Ω33 10.4357 10.4362 10.4362 10.4363 8.9581 8.9587 8.9588 8.9588 

Ω34 13.0894 13.0904 13.0906 13.0906 11.2758 11.2774 11.2776 11.2776 

Ω35 15.7197 15.7220 15.7223 15.7224 13.5726 13.5763 13.5767 13.5768 
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Fig. 2. Four free vibration frequencies nkΩ  of the circular composite membrane 

consisting of three segments for n = 0, as functions of the ratio 1r b  

for various σ  and ( )2 1 0.01r r b− =  
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5. Conclusions 

In this paper, a solution to the free vibration problem of annular and circular 
composite membranes has been derived. Numerical analysis has shown the effect 
of parameters characterizing the composite annular or circular membranes on their 
eigenfrequencies. The frequency analysis was performed for a circular membrane 
with an inner highlighted annular membrane whose material density (or thickness) 
is much greater than the material density (or thickness) of the remaining part of the 
membrane. The numerical results show that the location of the highlighted annular 
membrane has a significant effect on eigenfrequencies of the composite membrane. 
It follows that the application of this annular membrane can be used to introduce 
a specific change in the dynamical characteristic of the composite membrane. 
Numerical examples show that the presented method can be used to determine 
approximate natural frequencies of composite membranes with continuously 
varying densities or thicknesses. 
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