Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article investigates the steady state flow of an incompressible fluid which is treated as a Williamson fluid through a stenoised region in the shape of cosine constriction. Blood is taken as a Williamson fluid. Mathematical formulation leads us to nonlinear compatibility and energy equations, which are then deciphered by the shooting technique to obtain the numerical solution. Suitable resemblance transformations are used to change partial differential equations into an embellished form of ordinary differential equations. Further, the consequences of the different parameters involved are shown by graphs and a conclusion is presented. Velocity and temperature fields are canvassed graphically for the distinct values of emerging parameters and discussed in tabular form. Skin friction and the coefficient of heat transfer are also covered in the discussion. The resulting Nusselt number curve exhibits negative deflection for variational values of λ and height of the stenosis δ.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
88--95
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
autor
- Department of Mathematics, University of Gujrat, Gujrat 50700
autor
- Department of Mathematics, University of Gujrat, Gujrat 50700
autor
- Department of Mathematics, University of Gujrat, Gujrat 50700
autor
- Dept. of Mathematics, Faculty of Science, King Abdulaziz Univ., P. O. Box 80257, Jeddah 21589, Saudi Arabia
- Department of Mathematics, Quaid-I-Azam University, Islamabad 44000, Pakistan
Bibliografia
- [1] Ellahi R, Rahman SU, Nadeem S. Blood flow of Jeffrey fluid in a catherized tapered artery with the suspension of nanoparticles. Physics Letters A 2014;378:2973-80. https://doi.org/10.1016/j.physleta.2014.08.002.
- [2] Nallapu S, Radhakrishnamacharya G. Jeffrey Fluid Flow through a Narrow Tubes in the Presence of a Magnetic Field. Procedia Engineering 2015;127:185-92. https://doi.org/10.1016/j.proeng.2015.11.325
- [3] Akbar NS, Nadeem S. Influence of heat and chemical reactions on the Sisko fluid model for blood flow through a tapered artery with a mild stenosis. Quaestiones Mathematicae 2014;37:157-77. https://doi.org/10.2989/16073606.2013.7799 90.
- [4] Sharma BD, Yadav PK, Filippov A. A Jeffreyfluid model of blood flow in tubes with stenosis. Colloid Journal 2017;79:849-56. https://doi.org/10.1134/S1061933X1706014X.
- [5] Tu C, Deville M. Pulsatile flow of non-Newtonian fluids through arterial stenoses. Journal of Biomechanics 1996;29:899-908. https://doi.org/10.1016/0021-9290(95)00151-4.
- [6] Azhar Mirza, Ali R Ansari, Abdul M Siddiqui, Tahira Haroon. On the steady two-dimensional flow of blood with heat transfer in the presence of a stenosis. WSEAS Transactions on Fluid Mechanics 2013;8:149-58.
- [7] Nadeem S, Hussain A, Khan M. HAM solutions for boundary layer flow in the region of the stagnation point towards a stretching sheet. Communications in Nonlinear Science and Numerical Simulation 2010;15:475-81. https://doi.org/10.1016/j.cnsns.2009.04.037.
- [8] Awais M, Malik MY, Bilal S, Salahuddin T, Hussain A. Magnetohydrodynamic (MHD) flow of Sisko fluid near the axisymmetric stagnation point towards a stretching cylinder. Results in Physics 2017;7:49-56. https://doi.org/10.1016/j.rinp.2016.10.016.
- [9] Khan I, Malik MY, Hussain A, Salahuddin T. Effect of homogenous-heterogeneous reactions on MHD Prandtl fluid flow over a stretching sheet. Results in Physics 2017;7:42260-31. https://doi.org/10.1016/j.rinp.2017.10.052.
- [10] Hussain A, Sarwar L, Nadeem S, Akbar S, Jamal S. Inquisition of combined effects of radiation and MHD on elastico-viscous fluid flow past a pervious plate. Journal of the Brazilian Society of Mechanical Sciences and Engineering 2018;40:343. https://doi.org/10.1007/s40430-018-1228-z.
- [11] Hussain A, Malik MY, Bilal S, Awais M, Salahuddin T. Computational analysis of magnetohydrodynamic Sisko fluid flow over a stretching cylinder in the presence of viscous dissipation and temperature dependent thermal conductivity. Results in Physics 2017;7:139-46. https://doi.org/10.1016/j.rinp.2016.12.006.
- [12] Malik MY, Hussain A, Nadeem S. Flow of a Non-Newtonian Nanofluid Between Coaxial Cylinders with Variable Viscosity. Zeitschrift Für Naturforschung A 2012;67:255-61. https://doi.org/10.5560/zna.2012-0018.
- [13] Hussain A, Sarwar L, Akbar S, Malik MY, Ghafoor S. Model for MHD viscoelastic nanofluid flow with prominence effects of radiation. Heat Transfer-Asian Research 2019;48:463-82. https://doi.org/10.1002/htj.21344.
- [14] Hussain A, Ullah A. Boundary layer flow of a Walter’s B fluid due to a stretching cylinder with temperature dependent viscosity. Alexandria Engineering Journal 2016;55:3073-80. https://doi.org/10.1016/j.aej.2016.07.037.
- [15] Hussain A, Ghafoor S, Malik MY, Jamal S. An exploration of viscosity models in the realm of kinetic theory of liquids originated fluids. Results in Physics 2017;7:2352-60. https://doi.org/10.1016/j.rinp.2017.06.036.
- [16] Khan M, Malik MY, Salahuddin T, Khan I. Heat transfer squeezed flow of Carreau fluid over a sensor surface with variable thermal conductivity: A numerical study. Results in Physics 2016;6:940-5. https://doi.org/10.1016/j.rinp.2016.10.024.
- [17] Nadeem S, Akbar NS. Effects of temperature dependent viscosity on peristaltic flow of a Jeffrey-six constant fluid in a non-uniform vertical tube. Communications in Nonlinear Science and Numerical Simulation 2010;15:3950-64. https://doi.org/10.1016/j.cnsns.2010.01.019.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4fe69cea-9c42-4a12-bade-57eb974f75be