PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Water productivity under deficit irrigation using onion as indicator crop

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Improving water productivity (WP) through deficit irrigation is crucial in water-scarce areas. To practice deficit irrigation, the optimum level of water deficit that maximizes WP must be investigated. In this study, a field experiment was conducted to examine WP of the three treatments at available soil water depletion percentage (Pi) of 25% (reference), 45% and 65% using a drip irrigation system. Treatments were arranged in a randomized complete block design. The water deficit was allowed throughout the growth stages after transplanting except for the first 15 days of equal amounts of irrigations during the initial growth stage and 20 days enough spring season rainfall during bulb enlargement periods. Physical WP in terms of water use efficiency (WUEf) for treatments T1, T2, and T3 was 9.44 kg∙m–3, 11 kg∙m–3 and 10.6 kg∙m–3 for marketable yields. The WUEf and economic water productivity were significantly improved by T2 and T3. The WUEf difference between T2 and T3 was insignificant. However, T2 can be selected as an optimal irrigation level. Hence, deficit irrigation scheduling is an important approach for maximizing WP in areas where water is the main constraint for crop production. The planting dates should be scheduled such that the peak water requirement periods coincide with the rainy system.
Wydawca
Rocznik
Tom
Strony
171--178
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • University of Johannesburg, Faculty of Engineering and the Built Environment, Department of Civil Engineering Science, Auckland Park Campus Kingsway, 524 Johannesburg, South Africa
  • Mekelle University, Institute of Water and Environment, Mekelle, Ethiopia
  • University of Botswana, Faculty of Science, Department of Geology, Gaborone, Botswana
  • University of Johannesburg, Department of Civil Engineering Science, Johannesburg, Gauteng, South Africa
Bibliografia
  • ABOUKHALED A., ARAR A., BALBA A.M., BISHAY B.G., KADRY L.T., RUTEM P.E., TAHER A. 1975. Research on crop water use, salt affected soils and drainage in the Arab Republic of Egypt. A review with recommendations. Cairo, Egypt. FAO Near East Regional Office pp. 92.
  • ALLEN R.G., PRUITT W.O. 1991. FAO-24 reference evapotranspiration factors. Journal of Irrigation and Drainage Engineering. Vol. 117. Iss. 5 p. 758–773. DOI 10.1061/(ASCE)0733-9437(1991)117:5(758).
  • APHA 2017. Standard methods for the examination of water and wastewater. 23rd ed. American Public Health Association, American Water Works Association, and Water Environment Federation.
  • AYERS R.S., WESTCOT D.W. 1985. Water quality for agriculture. Vol. 29. Rome. FAO Irrigation and Drainage Paper. Vol. 29. Rev. 1. Rome. FAO, UN. ISBN 9251022631 pp. 174.
  • BECH N., WAVEREN E. 2002. Environmental Support Project (ESP), Component 2: Environmental Assessment and Sustainable Land Use plan for North Wollo.
  • Campbell Scientific Inc. 2001. HydroSense instruction manual. Rev. 2/01 pp. 14 + Appendixes.
  • CAPRA A., CONSOLI S., SCICOLONE B. 2008. Deficit irrigation: Theory and practice. In: Agricultural irrigation research progress. Eds. D. Alonso, H.J. Iglesias. Nova Science Publishers, Inc. p. 53–82.
  • COSTA J.M., ORTUÑO M.F., CHAVES M.M. 2007. Deficit irrigation as a strategy to save water: Physiology and potential application to horticulture. Journal of Integrative Plant Biology. Vol. 49. Iss. 10. p. 1421–1434. DOI 10.1111/j.1672-9072. 2007.00556.x.
  • DASTANE N.G. 1974. Effective rainfall in irrigated agriculture. FAO Irrigation and Drainage Paper. Vol. 25. Rome. FAO, UN pp. 62.
  • DESALEGNE L., AKLILU S. 2003. Research experience in onion production. Research report No. 55, EARO, Addis Ababa Ethiopia p. 1–55.
  • FAO undated. Land and Water / Databases and software / Onion [online] / Food and Agriculture Organization of the United Nation. [Access 25.04.2019]. Available at: http://www.fao. org/land-water/databases-and-software/crop-information/ onion/en/
  • FERERES E., SORIANO M.A. 2007. Deficit irrigation for reducing agricultural water use. Journal of Experimental Botany. Vol. 58. Iss. 2 p. 147–159. DOI 10.1093/jxb/erl165.
  • GEERTS S., RAES D. 2009. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agricultural Water Management. Vol. 96. Iss. 9 p. 1275–1284. DOI 10.1016/j.agwat.2009.04.009.
  • HARGREAVES G.H., SAMANI Z.A. 1985. Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture. Vol. 1. Iss. 2 p. 96–99. DOI 10.13031/2013.26773.
  • HASHEM M.S., EL-ABEDIN T.Z., AL-GHOBARI H.M. 2018. Assessing effects of deficit irrigation techniques on water productivity of tomato for subsurface drip irrigation system. International Journal of Agricultural and Biological Engineering. Vol. 11. Iss. 4 p. 156–167. DOI 10.25165/j.ijabe. 20181104.3846.
  • JAT A.L., RATHORE B.S., DESAI A.G., SHAH S.K. 2018. Production potential, water productivity and economic feasibility of Indian mustard (Brassica juncea) under deficit and adequate irrigation scheduling with hydrogel. Indian Journal of Agricultural Sciences. Vol. 88. Iss. 2 p. 212–215.
  • KIJNE J.W., TUONG T.P., BENNETT J., BOUMAN B., OWEIS T. 2003. Ensuring food security via improvement in crop water productivity. Challenge Program on water and Food Background Paper 1 p. 20–26.
  • MCCORNICK P.G., KAMARA A.B., TADESSE G. 2003. Integrated water and land management research and capacity building priorities for Ethiopia. In: Proceedings of a MoWR/EARO/ IWMI/ILRI international workship held at ILRI. 2–4.12.2002 Addis Ababa, Ethiopia. Nairobi. ILRI.
  • MUBARAK I., HAMDAN A. 2018. Onion crop response to regulated deficit irrigation under mulching in dry Mediterranean region. Journal of Horticultural Research. Vol. 26. Iss. 1 p. 87–94. DOI 10.2478/johr-2018-0010.
  • NAKAWUKA P., PETERS T.R., KENNY S., WALSH D. 2017. Effect of deficit irrigation on yield quantity and quality, water productivity and economic returns of four cultivars of hops in the Yakima Valley, Washington State. Industrial Crops and Products. Vol. 98 p. 82–92. DOI 10.1016/j.indcrop.2017.01. 037.
  • NORELDIN T., OUDA S., MOUNZER O., ABDELHAMID M.T. 2015. CropSyst model for wheat under deficit irrigation using sprinkler and drip irrigation in sandy soil. Journal of Water and Land Development. No. 26 p. 57–64. DOI 10.1515/jwld-2015-0016.
  • RICHARDS L.A. (ed.) 1954. Diagnosis and improvement of saline and alkali soils. Agriculture Handbook. No. 60. Washington, DC. USDA p. 159.
  • RUIZ-SANCHEZ M.C., DOMINGO R., CASTEL J.R. 2010. Deficit irrigation in fruit trees and vines in Spain. Spanish Journal of Agricultural Research. Vol. 8. Iss. S2 p. S5–S20.
  • SCHEIERLING S.M., TRÉGUER D.O. 2018. Beyond crop per drop: Assessing agricultural water productivity and efficiency in a maturing water economy. International development in focus. Washington, DC. World Bank. ISBN 978-1-4648-1298-9 p. 99. DOI 10.1596/978-1-4648-1298-9.
  • SECKLER D., MOLDEN D., SAKTHIVADIVEL R. 2003. The concept of efficiency in water resources management and policy. In: Water productivity in agriculture: Limits and opportunities for improvement. Eds J.W. Kijne, Randolph Barker, D.J. Molden. Vol. 1. Cambridge, USA. CABI p. 37–51.
  • SHAHID S.A., UR RAHMAN K. 2011. Soil salinity development, classification, assessment, and management in irrigated agriculture. In: Handbook of plant and crop stress. Ed. M. Pessarakli. Boca Raton. CRC Press p. 46–62.
  • SHAREEF M., GUI D., ZENG F., WAQAS M., ZHANG B., IQBAL H. 2018. Water productivity, growth, and physiological assessment of deficit irrigated cotton on hyperarid desert-oases in northwest China. Agricultural Water Management. Vol. 206 p. 1–10. DOI 10.1016/j.agwat.2018.04.042.
  • WAKCHAURE G.C., MINHAS P.S., MEENA K.K., SINGH N.P., HEGADE P.M., SORTY A.M. 2018. Growth, bulb yield, water productivity and quality of onion (Allium cepa L.) as affected by deficit irrigation regimes and exogenous application of plant bioregulators. Agricultural Water Management. Vol. 199 p. 1–10. DOI 10.1016/j.agwat.2017.11.026.
  • WALKLEY A. 1947. A critical examination of a rapid method for determining organic carbon in soils – effect of variations in digestion conditions and of inorganic soil constituents. Soil Science. Vol. 63. Iss. 4 p. 251–264.
  • XUE J., HUO Z., WANG F., KANG S., HUANG G. 2018. Untangling the effects of shallow groundwater and deficit irrigation on irrigation water productivity in arid region: New conceptual model. Science of the Total Environment. Vol. 619 p. 1170–1182. DOI 10.1016/j.scitotenv.2017.11.145.
  • YANG H., LIU H., ZHENG J., HUANG Q. 2018. Effects of regulated deficit irrigation on yield and water productivity of chili pepper (Capsicum annuum L.) in the arid environment of Northwest China. Irrigation Science. Vol. 36. Iss. 1 p. 61–74. DOI 10.1007/s00271-017-0566-4.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4fe4c5c3-37cd-480b-86f5-8cac6c8c8f1f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.