Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This research aimed to investigate the potential screening of wood degrading fungi to degrade the textile dye. Nine fungi were selected based on their ability to remove the turquoise blue textile dye on liquid potatoes dextrose médium. The fungi which have a high color removal efficiency were identified and analyzed qualitatively in terms of the manganese peroxidase and lignin peroxidase enzymes and their enzyme activity was determined. The selected fungi were investigated for their ability to degrade turquoise blue under variations in pH, dye concentration, and contact time. The results showed that three of the nine strains of wood-degrading local fungi, identified as Trametes hirsuta, Microporus xanthopus, and Ganoderma applanatum, were able to degrade textile dye. The color removal efficiency of dye treatment was monitored under the initial pH, dye concentration, and contact time variation. The study analyzed that the optimal color removal efficiency of the turquoise blue textile dye with a concentration of 30 mg/L in an aqueous solution was achieved at 78.50 and 85.84% at pH 6 for Microporus xanthopus and Ganoderma applanatum, while the color removal efficiency was 82.17% at pH 5 for Trametes hirsuta with seven days of incubation time.
Czasopismo
Rocznik
Tom
Strony
205--214
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Pendidikan Ganesha, Singaraja 81116 Bali, Indonesia
autor
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Pendidikan Ganesha, Singaraja 81116 Bali, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Pendidikan Ganesha, Singaraja 81116 Bali, Indonesia
autor
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Pendidikan Ganesha, Singaraja 81116 Bali, Indonesia
autor
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Pendidikan Ganesha, Singaraja 81116 Bali, Indonesia
autor
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Pendidikan Ganesha, Singaraja 81116 Bali, Indonesia
Bibliografia
- 1. Asses N., Ayed L., Hkir N., Hamdi M. 2018. Congo red decolorization and detoxification by Aspergillus niger: Removal mechanisms and dye degradation pathway. Bio. Med Res., Int. 1–9.
- 2. Azzaz A.A., Jellali S., Hamed N.B.H, El Jery H., Khezami L., Assadi A.A, Amrane A. 2021. Photocatalytic treatment of wastewater containing simultaneous organic and inorganic pollution: Competition and operating parameters effects. Catalysts, 11(855), 1–17.
- 3. Canas A., Camarero S. 2020. Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol. Adv., 28(6), 694–705.
- 4. Daneshvar N., Ayazloo M., Khataee A.R., Pourhassan M. 2007. Biological decolorization of dye solution containing Malachite Green by microalgae Cosmarium sp. Bioresour. Technol., 98(6), 1176–1182.
- 5. de Oliveira P.L., Duarte M.C.T., Ponezi A.N., Durrant L.R. 2009. Purification and partial characterization of manganese peroxidase from Bacillus pumilus and Paenibacillus sp. Braz. J. Microbiol., 40(4), 818–826.
- 6. Dewi R.S., Kasiamdari R.S, Martani E., Purwestari Y.A. 2018. Decolorization and detoxification of batik dye effluent containing Indigosol Blue-04B using fungi isolated from contaminated dye effluent. Indones. J. Biotechnol., 23(2), 54–60.
- 7. El-Sheekh M.M., El-Souod G.W.A., El Asrag H.A. 2018. Biodegradation of some dyes by the green alga Chlorella vulgaris and the Cyanobacterium Aphanocapsa elachista. Egypt. J. Bot., 58(3), 311–320.
- 8. Geethanjali P.A., Jayashankar M. 2017. Bioconversion of agricultural biomass for industrial enzyme production and pollution control. Int. J. Recent Sci. Res., 8(8), 19061–19064.
- 9. Illuri R., Kumar M., Eyini M., Veeramanikandan V., Almaary K.S., Elbadawi Y.B., Biraqdar M.A, Balaji P. 2021. Production, partial purification and characterization of ligninolytic enzymes from selected basidiomycetes mushroom fungi. Saudi J. Biol. Sci., 28(12), 7207–7218.
- 10. Iqbal A., Ali N., Shang Z.H, Malik N.H., Rehman M.M.U., Sajjad W., Rehman M.L.U., Khan S. 2022. Decolorization and toxicity evaluation of simulated textile effluent via natural microbial consortia in attached growth reactors. Environ. Technol. Innov., 26, 1–14.
- 11. Juárez-Hernández J., Castillo-Hernández D., Pérez-Parada C., Nava-Galicia S., Cuervo-Parra J.A., Surian-Cruz E., Díaz-Godínez G., Sánchez C., Bibbins-Martínez M. 2021. Isolation of fungi from a textile Industry effluent and the screening of their potential to degrade industrial dyes. J. Fungi., 7(10), 1–17.
- 12. Kunjadia P.D., Sanghvi G.V., Kunjadia A.P., Mukhopadhyay P., Dave G.S. 2016. Role of ligninolytic enzymes of white rot fungi (Pleurotus spp.) grown with azo dyes. Springer Plus, 5(1487), 2–9.
- 13. Laksmi F.A., Agustriana E., Nuryana I., Rachmayati R., Perwitasari U., Rumaisha., Andriani A. 2021. Removal of textile dye, RBBR, via decolorization by Trametes hirsuta AA-017. Biosaintifika: J. Biol. Educ., 13(3), 319–327.
- 14. Machado K.M.G., Matheus D.R., Monteiro R.T.R., Bononi V.L.R. 2005. Biodegradation of pentachlorophenol by tropical basidiomycetes in soils contaminated with industrial residues. World J. Microbiol. Biotechnol., 21, 297–301.
- 15. Mahmood R.T., Asad M.J., Asgher M., Khan F.S., Muzammil K., Nasir N., Anwar P., Awais M. 2020. First report on the bioremediation of textile industrial effluents by Piptoporus betulinus IEBL-3 by using response surface methodology. Appl. Sci., 12(3), 1–17.
- 16. Martinez J.D.S., Balagurusamy N., Montañez J., Peralta R.A., Peralta R.D.F., Moreira M., Bracht A., Peralta R.M., Morales-Oyervides L. 2020. Synthetic dyes biodegradation by fungal ligninolytic enzymes: Process optimization, metabolites evaluation and toxicity assessment. J. Hazard. Mater., 400(2020), 1–12.
- 17. Nam S., Renganathan V. 2020. Non enzymatic reduction of azo dyes by NADH. Chemosphere, 40(4), 351–357.
- 18. Olufunke F.O.T., Emmanuel A., Victor A.A. 2016. Isolation, characterization and decolorization of textile dyes by fungal isolates from textile effluents. Int. J. Biol. Res., 4(1), 46–51.
- 19. Pérez-Cadena R., García-Esquivel Y., Castañeda-Cisneros Y.E., Serna-Díaz M.G., Ramírez-Vargas M.R., Muro-Urista C.R., Téllez-Jurado A. 2020. Biological decolorization of Amaranth dye with Trametes polyzona in an airlift reactor under three airflow regimes. Heliyon, 6(2), 1–7.
- 20. Premaratne M., Nishshanka G.K.S.H., Liyanaarachchi V.C., Nimarshana P.H.V., Ariyadasa T.U. 2021. Bioremediation of textile dye wastewater using microalgae: current trends and future perspectives. J. Chem. Technol. Biotechnol., 96(12), 3249–3258.
- 21. Rani B., Kumar V., Singh J., Bisht S., Teotia P., Sharma S., Kela R. 2014. Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability. Braz. J. Microbiol., 45(3), 1055–1063.
- 22. Salem S.S., Mohamed A.A., Gl-Gamal M.S., 2019. Talat M, Fouda A. Biological decolorization and degradation of azo dyes from textile wastewater effluent by Aspergillus niger. Egypt. J. Chem., 62(10), 1799–1813.
- 23. Sastrawidana D.K., Rachmawati DO., Sudiana K. 2018. Color removal of textile wastewater using indirect electrochemical oxidation with multi carbon electrodes. Environment Asia., 11(3), 170–181.
- 24. Sastrawidana I.D.K., Sukarta I.N. 2018. Indirect Electrochemical Oxidation with Multi Carbon Electrodes for Restaurant Wastewater Treatment. Journal Ecological Engineering, 19(1), 200–204.
- 25. Selvam K., Swaminathan K., Chae K.S. 2003. Decolourization of azo dyes and a dye industry effluent by a white rot fungus Thelephora sp. Bioresour. Technol., 88(2),115–119
- 26. Shanmugam V., Kumari M., Yadav K.D.S. 1999. n-Propanol as a substrate for assaying the lignin peroxidase activity of Phanerochaete chrysoporium. Indian J. Biochem. Biop., 36, 39–43.
- 27. Slokar Y.M., Lemarechal A.M. 1998. Methods of decoloration of textile wastewaters, Dyes and Pigments, 37(4), 335–356.
- 28. Sukarta I.N., Ayuni N.P.S, Sastrawidana D.K. 2021. Utilization of Khamir (Saccharomyces cerevisiae) as Adsorbent of Remazol Red RB Textile Dyes. Ecological Engineering & Environmental Technology, 22(1), 117–123.
- 29. Suryavathi V., Sharma S., Saxena P., Pandey S., Grover R., Kumar S., Sharma K.P. 2005. Acute toxicity of textile dye wastewaters (untreated and treated) of Sanganer on male reproductive systems of albino rats and mice. Reproductive Technology, 19(4), 547–556.
- 30. Syafiuddin A., Fulazzaky M.A. 2021. Decolorization kinetics and mass transfer mechanisms of Remazol Brilliant Blue R dye mediated by different fungi. Biotechnol. Rep., 29(2021), 1–14.
- 31. Wilkolazka A.J., Rdest J.K, Malarczyk E., Wardas W., Leonowicz A. 2002. Fungi and their ability to decolorize azo and anthraquinonic dyes, Enzyme Microb. Technol., 30(4), 566–572.
- 32. Wang Z., Kang S.B., Won S.W. 2020. Removal of reactive black 5 from aqueous solution using polyethylenimine-crosslinked chitin: Batch and fixed-bed column studies. Chem. Eng. Trans., 78(2020), 97–102.
- 33. Xu H., Heinze T.M., Paine D.D., Cerniglia C.E., Chen H. 2010. Sudan azo dyes and para red degradation by prevalent bacteria of the human gastrointestinal tract. Anaerobe, 16(2),114–119.
- 34. Yesilada O., Asma D., Cing S. 2003. Decolorization of textile dyes by fungal pellets. Process Biochem., 38(2003), 933–938.
- 35. Zhou R., Ma L., Fan F., Gong Y., Wan X., Jiang M., Zhang X., Yang Y. 2011. Decolorization of different dyes by a newly isolated white-rot fungi strain Ganoderma sp. J Hazard Mater., 192(2), 855–873.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4fe34004-cd13-468b-ad58-1e2bb8a6d156