Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
For more than a dozen or so years now, there has been growing interest in the use of modern laser scanning measurement methods in numerous mining operations engaged in underground excavation. However, the simple possession of a scanner does not guarantee satisfactory measurement results. This study sets out the results of scanning mine excavations in an active mine and describes the current guidelines on various aspects of the measurement process. These guidelines were developed on the basis of several hundred measurements carried out over the last dozen or so years. This study also outlines the typical measurements errors observed over the course of many years. These errors, resulting partly from hardware limitations and partly from human error when planning or actually performing measurements, were an important factor behind the introduction of standards regulating underground measurements. This study discusses in detail not only scanning that utilises traditional stationary laser scanners but also scanning based on mobile scanners. It also presents possible areas of future technological development in line with global trends.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
176--183
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
- AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection
autor
- AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection
Bibliografia
- [1] Bieniasz, J., Wojnar, W., Sadowski, A. & Wrzosek, J. (2011). Convergence of large depth mining excavations in salt rock formations. Geologia, 37/2, 207-214.
- [2] Chen, S., Walske, M. & Davies, I. (2018). Rapid mapping and analysing rock mass discontinuities with 3D terrestrial laser scanning in the underground excavation. International Journal of Rock Mechanics and Mining Sciences, 110, 28-35.
- [3] Chena, S., Walskeb, M.L. & Daviesc, I.J. (2018), Rapid mapping and analysing rock mass discontinuities with 3D terrestrial laser scanning in the underground excavation. International Journal of Rock Mechanics and Mining Sciences, 110, 28-35.
- [4] Diaz, V., van Oosterom, P., Meiijers, M., Verbree, E., Ahmed, N. & van Lankveld, T. (2024). Comparison of Cloud-to-Cloud Distance Calculation Methods - Is the Most Complex Always the Most Suitable? Recent Advances in 3D Geoinformation Science, 329-334
- [5] Fan, L., Smethurst, J., Atkinson, P. & Powrie, W. (2015). Error in target-based georeferencing and registration in terrestrial laser scanning. Computers & Geosciences, 83, 54-64.
- [6] Ge, Y., Tang, H., Xia, D., Wang, L., Zhao, B., Teaway, J.W., Chen, H. & Zhou, T. (2018). Automated measurements of discontinuity geometric properties from a 3D-point cloud based on a modified region growing algorithm. Engineering Geology, 242, 44-54.
- [7] Humair, F., Abellan, A., Carrea, D., Matasci, B., Epard, J-L. & Jaboyedoff, M. (2015). Geological layers detection and characterisation using high resolution 3D point clouds: example of a box-fold in the Swiss Jura Mountains. European Journal of Remote Sensing, 48, 541-568.
- [8] Janus, J. & Krawczyk, J. (2021). Measurement and Simulation of Flow in a Section of a Mine Gallery. Energies. 14(16):4894.
- [9] Jones, E. (2020). Mobile LiDAR for underground geomechanics: learnings from the teens and directions for the twenties. Second International Conference on Underground Mining Technology (pages 3-26). Crawley, Australia: Australian Centre for Geomechanics.
- [10] Kajzar, V., Kukutsch, R. & Heroldova, N. (2015). Verifying the possibilities of using a 3D laser scanner in the mining underground. Acta Geodynamica et Geomaterialia, 12, 1 (177), 51-58.
- [11] Kukutsch, R., Kajzar, V., Konicek, P., Waclawik P. & Ptacek J. (2015). Possibility of convergence measurement of gates in coal mining using terrestrial 3D laser scanner. Journal of Sustainable Mining, 14, 30-37.
- [12] Krawczyk, A. (2023). Mining Geomatics. ISPRS International Journal of Geo-Information, page 278.
- [13] Lai, P. & Samson, C. (2016), Applications of mesh parameterization and deformation for unwrapping 3D images of rock tunnels. Tunnelling and Underground Space Technology, 58, 109–119.
- [14] Leica TS16 Total Station User manual. (2024). Access: http://surveyteq.com/uploads/p_4728DC68-531B-1855-1437-C5BD241629A2-1608810446.pdf
- [15] Lipecki, T. & Jaśkowski, W. (2009). Application of laser scanners to determine the shape of mine excavations for safety assessment, using the example of the cross-cut Mina in the Salt Mine Wieliczka. Reports on Geodesy, 2/87, 239-250.
- [16] Lipecki, T., Jaśkowski, W., Gruszyński, W., Matwij, K., Matwij, W. & Ulmaniec, P. (2015). Inventory of the geometric condition of inanimate nature reserve Crystal Caves in “Wieliczka” Salt Mine. Acta Geoldaetica et Geophysica, Volume 51, pages 257- 272.
- [17] Liu, X., Zhang, X., Wang, L., Qu, F., Shao, A., Zhao, L., Wang, H., Yue, X., Li, Y., Yan, W. & He, J. (2024). Research progress and prospects of intelligent technology in underground mining of hard rock mines. Green and Smart Mining Engineering, In Press.
- [18] Mah, J., Samson, C., McKinnon, S.D. & Thibodeau, D. (2013). 3D laser imaging for surface roughness analysis. International Journal of Rock Mechanics and Mining Sciences, 58, 111-117.
- [19] Moon, D., Chung, S., Kwon, S., Seo, J. & Shin, J. (2019). Comparison and utilization of point cloud generated from photogrammetry and laser scanning: 3D world model for smart heavy equipment planning. Automation in Construction, 98, 322-331.
- [20] Mukupa, W., Roberts, G.W., Hancock, C.M. & Al-Manasir, K. (2017). A review of the use of terrestrial laser scanning application for change detection and deformation monitoring of structures. Survey Review, 49:353, 99-116.
- [21] Nghia, N. V., Long, N. Q., Cuc, N. T. & Bui, X.-N. (2019). Applied Terrestrial Laser Scanning for coal mine high definition mapping. World of Mining - Surface and Underground, 71(4),237-242.
- [22] Piestrzyński, A., Banaszak, A. & Zalewska-Kuczmierczyk, M. (2007). Sól kamienna na obszarze przedsudeckim. Chapter in: Monografia KGHM. Lubin: KGHM CUPRUM Sp. z o.o. CBR.
- [23] Singh, S. K., Banerjee, B. P. & Raval, S. (2021). Three-Dimensional Unique-Identifier-Based Automated Georeferencing and Coregistration of Point Clouds in Underground Mines. Remote Sensing, 13(16):3145.
- [24] Singh, S.K., Banerjee, B.P. & Raval, S. (2023). A review of laser scanning for geological and geotechnical applications in underground mining. International Journal of Mining Science and Technology. 33, 133-154.
- [25] Technical specification sheet for Faro FOCUS S 350. (2024).Access: https://knowledge.faro.com/Hardware/Focus/Focus/Technical_Specification_Sheet_for_the_Focus_Laser_Scanner
- [26] Technical specification sheet for LeicaFlexLine TS09plus Total Station. (2024). Access: https://www.sccssurvey.co.uk/leicaflexline-ts09plus-total-station.html
- [27] Watson, C. & Marshall, J. (2018). Estimating underground mine ventilation friction factors from low density 3D data acquired by a moving LiDAR. International Journal of Mining Science and Technology, 28, 657-662.
- [28] Zeb Horizon - User manual. (2020). Access: https://geoslam.com/wp-content/uploads/2021/02/ZEB-Horizon-User-Manualv1.3.pdf
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4fe2481d-f276-4bfe-91ca-f7cffed983e5