Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The performance of rotor flux oriented induction motor drives, widely used these days, relies on the accurate knowledge of key machine parameters. In most industrial drives, the rotor resistance, subject to temperature variations, is estimated on-line due to its significant influence on the control behaviour. However, the rest of the model parameters are also subject to slow variations, determined mainly by the operating point of the machine, compromising the dynamic performance and the accuracy of the torque estimation. This paper presents an improved rotor-resistance on-line estimation algorithm that contemplates the iron losses of the electrical machine, the iron saturation curve and the mechanical losses. In addition, the control also compensates the rest of the key machine parameters such as the leakage and magnetizing inductances and the iron losses. These parameters are measured by an off-line estimation procedure and stored in look up-tables used by the control. The paper begins by presenting the machine model and the proposed rotor flux oriented control strategy. Subsequently, the off-line parameter measurement procedure is described. Finally, the algorithm is extensively evaluated and validated experimentally on a 15 kW test bench.
Rocznik
Tom
Strony
309--324
Opis fizyczny
Bibliogr. 28 poz., rys., wykr.
Twórcy
autor
- Ingeteam Power Technology S. A., Parque Tecnológico de Bizkaia, Edificio 110, 48170 Zamudio – Spain
autor
- The University of Mondragon, Loramendi 4 Aptdo 23, 20500 Mondragon, Spain
autor
- Ingeteam Power Technology S. A., Parque Tecnológico de Bizkaia, Edificio 110, 48170 Zamudio – Spain
autor
- Ingeteam Power Technology S. A., Parque Tecnológico de Bizkaia, Edificio 110, 48170 Zamudio – Spain
autor
- Ingeteam Power Technology S. A., Parque Tecnológico de Bizkaia, Edificio 110, 48170 Zamudio – Spain
Bibliografia
- [1] F. Blaschke, “A new method for the structural decoupling of A.C. induction machines”, Conf. Rec. IFAC 1, CD-ROM (1971).
- [2] W. Leonhard, Control of Electrical Drives, Springer-Verlag, Berlin, 1985.
- [3] B.K. Bose, “Power electronics and motor drives recent progress and perspective”, IEEE Trans. Industrial Electronics 56, 581-588 (2009).
- [4] H.N. Hickok, “Adjustable Speed - A Tool for saving energy losses in pumps, fans, blowers, and compressors”, IEEE Trans.on Industry Applications IA-21, 124-136 (1985).
- [5] http://www.ingeteam.com
- [6] S. Kouro, M. Malinowski, K. Gopakumar, J. Pou, L.G. Franquelo, B. Wu, J. Rodriguez, M.A. Peˇerez, and J.I. Leon, “Recent advances and industrial applications of multilevel converters”, IEEE Trans. on Industrial Electronics 57 (8), 2553-2580 (2010).
- [7] F. Bonnet, P.E. Vidal, and M. Pietrzak-David, “Direct torque control of doubly fed induction machine”, Bull. Pol. Ac.: Tech. 54 (3), 307-314 (2006).
- [8] I. Takahashi and Y. Ohmori, “High-performance direct torque control of an induction motor”, IEEE Trans. Ind. Applicat. 25, 257-264 (1989).
- [9] M. Depenbrock, “Direct self-control (DSC) of inverter-fed induction machine”, IEEE Trans. Power Electron. 3, 420-429 (1988).
- [10] P. Antoniewich and M.P. Kazmierkowski, “Predictive direct power control of three phase boost rectifier”, Bull. Pol. Ac.:Tech. 54 (3), 287-292 (2006).
- [11] D. Casadei, G. Serra, A. Tani, and L. Zarri, “Assessment of direct torque for induction motor drives”, Bull. Pol. Ac.: Tech. 54 (3), 237-254 (2006).
- [12] E. Levi, “Impact of cross-saturation on accuracy of saturated induction machine models”, IEEE Trans. on Energy Conversion 12 (3), 211-216 (1997).
- [13] R.C. Healey, S. Williamson, and A.C. Smith, “ Improved cage rotor models for vector controlled induction motors”, IEEETrans. on Industry Applications 31 (4), CD-ROM (1995).
- [14] A.C. Smith, R.C. Healey, and S. Williamson, “A transient induction motor model including saturation and deep bar effect”, IEEE Trans. on Energy Conversion 11 (1), CD-ROM (1996).
- [15] I. Boldea and A. Nasar, The Induction Machine Handbook, CRC Press, London, 2001.
- [16] S. Maiti, C. Chakraborty, Y. Hori, and Minh C. Ta, “Model reference adaptive controller-based rotor resistance and speed estimation techniques for vector controlled induction motor drive utilizing reactive power”, IEEE Trans. on Industrial Electronics 55 (2), CD-ROM (2008).
- [17] P. Roncero, A. Garc´ıa, and V. Feliu, “Rotor-resistance estimation for induction machines with indirect-field orientation”, ElsevierControl Engineering Practice 15 (9), 1119-1133 (2007).
- [18] S. Wade, M.W. Dunnigan, and B.W. Williams, “A new method of rotor resistance estimation for vector-controlled induction machines”, IEEE Trans. on Industrial Electronics 44 (2), CDROM (1997).
- [19] J. Faiz and M.B.B. Sharifian, “Different techniques for real time estimation of an induction motor rotor resistance in sensorless direct torque control for electric vehicle”, IEEE Trans.on Energy Conversion 16 (1), 1045-1053 (2001).
- [20] E. Levi and S.N. Vukosavic, “Identification of the magnetising curve during commissioning of a rotor flux oriented induction machine”, IEE Proc. on Electric Power Applications 146 (6), CD-ROM (1999).
- [21] E. Levi, “Impact of iron loss on behaviour of vector controlled induction machines”, IEEE Trans. on Industry Applications 31 (6), 1287-1296 (1995).
- [22] E. Levi,M. Sokola, A. Boglietti, and M. Pastorelli, “Iron loss in rotor flux oriented induction machines: identification, assessment of detuning and compensation”, IEEE Trans. on PowerElectronics 11 (5), 698-709 1996.
- [23] J. Holtz, “Sensorless control of induction machines - with or without signal injection?”, IEEE Trans. on Ind. Electronics 53 (1), 7-30 (2006).
- [24] M. Hinkkanen, L. Harnefors, and J. Luomi, “Reduced-order flux observers with stator-resistance adaptation for speedsensorless induction motor drives”, IEEE Trans. Power Electron 25 (5), 1173-1183 (2010).
- [25] J. Holtz, J. Quan, “Drift and parameter compensated flux estimator for persistent zero stator frequency operation of sensorless controlled induction motors”, IEEE Trans. Ind. Appl. 39 (4), 1052-1060 (2003).
- [26] S. Beineke, F. Schutte, and H. Grotstolen, “Comparison of methods for state estimation and on-line identification and position control loops”, Proc. Eur. Power Electronics Conf. EPE1997 3, 3.364-3.369 (1997).
- [27] H. Rasmuse, M. Kundsen, and M. Tonnes, “Parameter estimation of inverter and motor model at standstill using measured current only”, IEEE Trans. on Industrial Electronics 46 (1), 139-149 (1999).
- [28] Institute of Electrical and Electronics Engineers (IEEE), IEEEStandard Procedure for Polyphase Induction Motors and Generators, IEEE Standard 112-1996, IEEE Press, New York, 1996.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4fe1efa1-3952-42fd-a2d5-38aa6c11e14f