PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Transmission and photonic band gaps in Fibonacci superlattices

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of the article was to broaden the knowledge about the behavior of Fibonacci superlattices as filters electromagnetic waves. Design/methodology/approach: Simulations of multi-layer systems is usually carried out by using two complementary methods. The first, matrix method which allows the study of the properties of structures using transmission maps and the second method used is the Finite-Difference Time Domain (FDTD) algorithm allows on the study of electromagnetic wave propagation in the structure. Findings: It can be seen that the lighting of the filter with monochromatic light in the wavelength range of the band gap filter at the output causes propagation of low intensity in the range other than the wavelength of the incident beam. Research limitations/implications: The simulation was not considered the impact of losses in the material. Practical implications: Present clear differences depending on the polarization allow the use of superlattices as polarizers for specific ranges of wavelengths and angles of incidence. Originality/value: Fibonacci superlattices have been pre-tested in. The purpose of the article was to broaden the knowledge about the behavior of these structures as filters electromagnetic waves with a wavelength range from the near infrared, the effect of the material surrounding the transmission and increasing knowledge of the formation of band gaps.
Rocznik
Strony
229--235
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
autor
  • Institute of Physics, Technical University of Częstochowa, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • Institute of Physics, Technical University of Częstochowa, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • Institute of Physics, Technical University of Częstochowa, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • Institute of Materials Engineering, Technical University of Częstochowa, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • Institute of Physics, Technical University of Częstochowa, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • Department of Materials Design, Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Wołowska 141, Warszawa
Bibliografia
  • [1] M. Born, E. Wolf, Principles of optics, Pergamon Press, London, 1968.
  • [2] P. Yeh, Optical waves in layered media, John Wiley and Sons, New York, 1988.
  • [3] L.M. Briechowski, Wołny w słoistych sriedach, Publishing house Nauka, Moskwa, 1973.
  • [4] A. Yariv, P. Yeh, Optical waves in crystals. propagation and control of laser radiation, John Wiley and Sons, New York, 1984.
  • [5] A. Rostami, S. Matloub, Exactly solvable inhomogeneous Fibonacci-class quasi-periodic structures (optical filtering), Optics Communications 247 (2005) 247-256.
  • [6] S. John, Strong localization of photons in certain disordered dielectric superlattices, Physical Review Letters 58 (1987) 2486-2489.
  • [7] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Physical Review Letters 58 (1987) 2059-2062.
  • [8] E. Yablonovitch, Photonic crystals, light semiconductors, The World of Science 126/2 (2002) 46-53 (in Polish).
  • [9] J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic crystals. Molding the flow of light, Princeton University Press, Singapore, 1995.
  • [10] S.G. Johnson, J.D. Joannopoulos, Photonic crystals. The road from theory to practice, Kluwer Academic Publishers, Boston, 2002.
  • [11] D.J. Lockwood, L. Pavesi, Silicon Photonics, Applied Physics vol. 94, Springer-Verlag, Heidelberg, 2004.
  • [12] K. Sakoda, Optical properties of photonic crystals, Springer-Verlag, Berlin, 2001.
  • [13] A. Bjarklev, J. Broeng, A.S. Bjarklev, Photonic crystal fibers, Kluwer Academic Publishers, Boston, 2003.
  • [14] D.S. Shechmtan, I. Blench, D. Gratias, J.W. Cahn, Metallic phase with long-ranged orientational order and no translational symmetry, Physical Review Letters 53 (1984) 1951-1953.
  • [15] D. Levine, P.J. Steinhardt, Quasicrystals: A new class of ordered structures, Physical Review Letters 53 (1984) 2477-2480.
  • [16] D. Levine, P.J. Steinhardt, Quasicrystals. I. Definition and structure, Physical Review B 34 (1986) 596-616.
  • [17] P.J. Steinhardt, S. Ostlund, The physics of quasicrystals,World Scientific, Singapore, 1987.
  • [18] P. Guyot, P. Krammer, M. de Boissieu, Quasicrystals, Reports on Progress in Physics, 54 (1991) 1373-1425.
  • [19] D.P. DiVincenzo, P.J. Steinhardt, Quasicrystals: The state of the art, World Scientific, Singapore, 1991.
  • [20] S.J. Poon, Electronic properties of quasicrystals. An experimental review, Advances in Physics 41 (1992) 303.
  • [21] Ch. Hu, R. Wang, D.-H. Ding, Symmetry groups, physical property tensors, elasticity and dislocations in quasicrystals, Reports on Progress in Physics 63 (2002) 1-39.
  • [22] L. Esaki, R. Tsu, Superlattice and negative differential conductivity in semiconductors, IBM Journal of Research and Development 14 (1970) 61-65.
  • [23] A. Wacker, Semiconductor superlattices: a model system for nonlinear transport, Physics Reports 357 (2002) 1-111.
  • [24] M. Gluck, A.R. Kolovsky, H.J. Korsch, Wannier-Stark resonances in optical and semiconductor superlattices, Physics Reports 366 (2002) 103-182.
  • [25] E.L. Albuquerque, M.G. Cottam, Theory of elementary excitations in quasicrystals structures, Physics Reports 376 (2003) 225-337.
  • [26] E. Abe, Y. Yan, S.J. Pennycook, Quasicrystals as cluster aggregates, Nature Materials 3 (2004) 759-767.
  • [27] X. Zhou, Ch. Hu, P. Gong, Sh. Qiu, Nonlinear elastic properties of decagonal quasicrystals, Physical Review B 70 (2004) 94202-94206.
  • [28] L. Jacak, P. Hawrylak, A.Wójs, Quantum dots, Springer-Verlag, Berlin Heidelberg New York, 1998.
  • [29] H.S. Nalwa, Nanostructured materials and nanotechnology, Academic Press, New York, 2002.
  • [30] M. Kohler, W. Fritzsche, Nanotechnology: an introduction to nanostructuring techniques, Wiley-VCH Verlag, Weinheim, 2004.
  • [31] Z.L. Wang, Y. Liu, Z. Zhang, Handbook of nanophase and nanostructured materials Vol. 1, Synthesis, Kluwer Academic/Plenum Publishers, New York, 2003.
  • [32] M. Jurczyk, J. Jakubowicz, Ceramic nanomaterials, Publishing house Poznań University of Technology, Poznań, 2004 (in Polish).
  • [33] V.G. Veselago, Elektrodinamika veshchestv s odnovremeno otricatelnymi znacheniami ε i μ, Uspekhi Fizicheskikh Nauk 92 (1968) 517-529.
  • [34] D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with negative permeability and permittivity, Physical Review Letters 84 (2000) 4184-4187.
  • [35] E. Cubukcu, K. Aydin, E. Ozbay S. Foteinopoulou, C.M. Soukoulis, Subwavelength resolution in a two-dimensional photonic-crystal-based superlens, Physical Review Letters 91 (2003) 207401.
  • [36] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C.M. Soukoulis, Electromagnetic waves: Negative refraction by photonic crystals, Nature 423 (2003) 604-605.
  • [37] K.Yu. Bliokh, Yu.P. Bliokh, What are the left-handed media and what is interesting about them, avaliable in EBP arXiv:physics/0408135 (2004).
  • [38] P. Markos, C.M. Soukoulis, Left-handed materials, avaliable in EBP arXiv:condmat/0212136 (2002).
  • [39] A.L. Pokrovsky, A.L. Efros, Sign of refractive index and group velocity in left-handed media, Solid State Communications 124 (2002) 283-287.
  • [40] C.M. Krowne, Y. Zhang, Physics of negative refraction and negative index materials, Springer, 2007.
  • [41] S.A. Ramakrishna, T.M. Grzegorczyk, Physics and applications of negative refractive index materials, SPIE Press and CRC Press, 2009.
  • [42] A. Klauzer-Kruszyna, Propagation of polarized light in selected aperiodic superstructures, PhD Thesis, Wrocław, 2005 (in Polish).
  • [43] S. Garus, M. Duś-Sitek, E. Zyzik, Effect of iron dopant on superlattice FexNi (1-x)/Cu transmission properties, New Technologies and Achievements in Metallurgy and Materials Engineering. XII International Scientific Conference. Chapter 2, Częstochowa, 2011 (in Polish).
  • [44] S. Garus, J. Garus, K. Gruszka, Emulation of electromagnetic wave propagation in superlattices using FDTD algorithm. New Technologies and Achievements in Metallurgy and Materials Engineering. A Collective Monograph Edited by Henryk Dyja, Anna Kawałek. Chapter 2, Publishing House WIPMiFS Częstochowa University of Technologies (2012) 768-771 (in Polish).
  • [45] D.M. Sullivan, Electromagnetic simulation using the FDTD method, IEEE Press, 2000.
  • [46] D. Levine, P.J. Steinhardt, Quasicrystals: A new class of ordered structures, Physical Review Letters 53 (1984) 2477.
  • [47] D. Levine, P.J. Steinhardt, Quasicrystals. I. Definition and structure, Physical Review B34 (1986) 596-616.
  • [48] J.E.S. Socolar, P.J. Steinhardt, Quasicrystals. II, Unit-cell configuration, Physical Review B 34 (1986) 617-647.
  • [49] P.J. Steinhardt, S. Ostlund, The Physics of quasicrystals, World Scientific, Singapore, 1987.
  • [50] G. Gumbs, M.K. Ali, Electronic properties of the tight-binding Fibonacci Hamiltonian, Journal of Physics A: Mathematical and General 22/8 (1989) 951-970.
  • [51] M. Kolar, M.K. Ali, Generalized fibonacci superlattices, dynamical trace maps, and magnetic excitations, Physical Review B39 (1989) 426.
  • [52] M. Holzer, Three classes of one-dimensional, two-tile Penrose tilings and the Fibonacci Kronig-Penney model as a generic case, Physical Review B38 (1988) 1709-1720.
  • [53] M. Kolar, M.K. Ali, Attractors of some volume nonpreserving Fibonacci trace maps, Physical Review A 39 (1989) 6538.
  • [54] J.Q. You, Q.B. Yang, Dynamical maps and Cantor-like spectra for a class of one-dimensional quasiperiodic lattices, Journal of Physics: Condensed Matter 2/8 (1990) 2093.
  • [55] J.Q. You, J.R. Yan, T. Xie, X. Zeng, J.X. Zhong, Generalized Fibonacci lattices: dynamical maps, energy spectra and wavefunctions, Journal of Physics: Condensed Matter 3/38 (1991) 7255.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4fe15c8c-2bdf-4337-bc09-71b19eb93c1f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.