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1. Introduction & problem statement 

This paper is devoted to the synthetic presentation of a 
stochastic modeling approach of condition-based 
maintenance policies for continuously deteriorating 
systems, which has been applied on several different 
condition-based maintenance policies, see e.g. [2,11]. 
The main motivation for this kind of work is the 
following. Nowadays, among maintenance 
practitioners, classical preventive maintenance policies 
[5,23,24] are more or less well established, but these 
static preventive maintenance approaches do not 
always meet the needs and requirements of high 
performance maintenance. In this context, condition-
based (or predictive) maintenance strategies can help. 
Moreover, the development and dissemination of 
systems monitoring facilities and maintenance 
information management and the need for improved 
maintenance performance under budget and resources 
constraints foster the implementation of such dynamic 
maintenance strategies. However, to ensure a safe and 
efficient migration from static (but robust) preventive 
maintenance policies to dynamic condition-based 
maintenance policies, we need to develop practice-
oriented maintenance performance model that can 
allow to assess and to optimize their performance 
[5,21,22]. 
For a gradually deteriorating system, the most 
advanced preventive maintenance strategies rely on the  
monitoring of a measurable system diagnostic 
parameter (``system state'') and base the maintenance 
decisions on the level of deterioration of the system. 
Generally, such a condition-based preventive 
maintenance policy is more efficient than a preventive 

maintenance policy based only on the age of the 
system and on the knowledge of the statistical 
information on its lifetime [10,17,18]. However, as 
stressed in [9], the price for this higher efficiency is the 
requirement of a mathematical model for the stochastic 
deterioration process of the maintained system. There 
is an economic necessity to quantify and model the 
deterioration / maintenance process, since this model 
can be used by the maintenance decision-maker as a 
tool to optimize the maintenance decisions and to 
minimize the total maintenance cost of the system. 
Usually, the task of deriving such a mathematical 
model turns out to be more complex than just 
statistically describing the binary transition from a 
``good state'' to a ``failed state''. 
 
This paper precisely examines the problem of 
developing a mathematical maintenance cost model for 
assessing and optimizing a condition-based 
maintenance policy for continuously deteriorating 
system. This modelling task usually consists in several 
steps: 
 

• deterioration and monitoring information 
modelling (modelling uncertainty, taking into 
account the lack of maintenance data, …); 

• modelling the effect of maintenance; 
• definition of maintenance decision process 

(pre-defined parametric structure vs. open-
decision, control limit policy, inspection 
rule, …); 

• building the performance model and 
optimizing the maintenance parameters. 
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2. Continuous deterioration modeling 

For many real-world systems, the deterioration process 
due to wear and tear is intrinsically continuous, e.g. 
systems subject to erosion (hydraulic structures, dikes), 
corrosion (steel reinforcements of concrete structures, 
pipelines), consumption (tires, brakes), cumulative 
wear (cutting tools), … For these systems, the notion 
of “discrete states” often used in maintenance and 
reliability models [9] might be irrelevant whereas the 
level of deterioration (which can be measured in 
practice, eventually through a strongly correlated 
process) has generally a clearer and more physical 
signification for the maintenance decision-maker. 
Accordingly, the choice in our work on maintenance 
modelling is to develop a model to assess maintenance 
decisions based directly on an observed deterioration 
level, without involving more abstract quantities like 
one-step transition probabilities in a finite-state process 
(with artificial states constructed by discretization from 
the continuous deterioration process) in the modelling 
procedure, see e.g. [12]. 
The basic aim of deterioration modelling is to be able 
to predict in some sense the future evolution of the 
deterioration level and to interpret and give sense to a 
deterioration raw measurement (Is this deterioration 
acceptable? How much time left before failure? …). 
As presented by R. Nicolai in [16], deterioration can be 
represented using a “black-box” model (lifetime 
distribution), a “white-box” model (explicit model 
constructed from the physics of the deterioration 
phenomenon) or a “grey-box” model (kind of stress-
strength model in which the system failure occurs 
when a measurable quantity representing time-
dependent deterioration exceeds a threshold). In the 
approach presented in this paper, we consider the class 
of “grey-box” models. 
 
The deterioration behavior of the unmaintained system 
is represented by a continuous-state univariate 
stochastic process { }0),( ≥ttX with initial level of 

deterioration 00 =X . The deterioration is strictly 
increasing which means that the system worsens with 
time due to ageing and accumulated wear or damage. 
The system failure occurs when a limit deterioration 
threshold L  is crossed: beyond this level of 
deterioration, the system can no longer  meet the user's 
requirements and is considered as failed, see Figure 1. 
This failure can be either an actual ``hard'' failure of an 
active system or a pending failure of a passive system 
or structure. The failure is not assumed to be self-
announcing, i.e. it can be detected only by an 
inspection. After failure, the system remains 
unavailable until the next scheduled maintenance 
operation. 

Assume that the system can be inspected or maintained 
only at periodic discrete maintenance times tktk δ.= ; 
thus, only the discrete-time stochastic process 
{ })( kk tXX =  can be observed. The elementary 
deterioration increments occurring between two 
successive maintenance times kt  and 1+kt  are assumed 
to be positive, exchangeable and stationary. The 
positiveness of the increments corresponds to the 
increasing monotonicity, which is a behavior observed 
in physical deterioration process. The properties of 
exchangeable and stationary increments are very 
similar (even if weaker) to the properties of stationary 
and independent increments. The stationarity and 
independence entail the ``memoryless'' property that 
the future increment of deterioration depends neither 
on the current level of deterioration of the system nor 
on its age, but only on the period of time over which 
the system deteriorates, [4,13,16].  
 
All these desirable deterioration properties lead to the 
class of Lévy processes [1] to develop a model of 
gradual deterioration. Any process belonging to the 
class of Lévy processes is the sum of a Wiener process 
and a jump process, [4,16]. Hence, Lévy processes can 
be used to model purely continuous deterioration 
processes as well as “jumps” deterioration processes. 
Forcing increasing monotonicity in the class of Lévy 
process leads to jumps processes which are clearly not 
the most adapted to model gradual continuous 
deterioration phenomena. One solution is then to 
consider the limit case of a jumps process with a 
countable infinite number of jumps on a finite interval 
of time, which in turn leads to the Gamma processes 
(because the pdf of the deterioration increments is 
Gamma and infinitely divisible, [7]). Gamma processes 
have been widely used in deterioration modelling for 
maintenance applications, see [14] for a complete 
review. In this paper, we will use stationary Gamma 
processes to model the deterioration phenomenon of 
the system to be maintained. 
 

 
         

Figure 1. Deterioration and failure of the system 
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A stationary Gamma process satisfies the following 
properties: 

• 0)0( =X  ; 

• the deterioration increments are stationary and 
independents ; 

• the random deterioration increment between 
times s and t , )()( sXtX − , follows a Gamma 
law: 
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with α(t)  is a linear function of time. 

 
3. Condition-based maintenance modelling  
 
3.1. Maintenance problem statement 

Once the stochastic deterioration model is available, 
our objective is to develop maintenance models for 
sequential condition-based maintenance policy for 
system monitored through inspections, i.e. whose state 
is not continuously observed. The main feature of this 
kind of policy is that the decision is sequentially and 
dynamically adapted to the level of system 
deterioration measured during an inspection. After an 
inspection at time tk  revealing the system deterioration 
level, we have to make a decision on two points, see 
Figure 2: 
 
• What action Ak  should be undertaken on the 

system to maintain it in a proper condition? 
• When should be performed the next inspection 

on the system? 
 
We want to consider mainly inspection/replacement 
policy, but also more complex policy involving 
different maintenance action such as partial repairs, 
with two main characteristics: (i) the inspection 
schedule is not periodic, and (ii) the nature and the 
time of the maintenance action are jointly optimized. 
 
To solve the maintenance modelling problem and to 
develop the mathematical maintenance model, we 
propose a 3-steps approach: first, we choose a 
parametric structure for the maintenance decision rule. 
Secondly, we characterize the steady-state behaviour 
of the system maintained under the chosen parametric 
maintenance decision rule. Finally, thanks to the 
knowledge of the steady-state behaviour of the system, 
we evaluate the maintenance performance criterion of 
interest, so as to be able to optimize the maintenance 
policy. 
 

 
 

Figure 2. Principle of a sequential condition-based 
maintenance policy 
 
3.2. Parametric structure-based decision rule 

Developing a quite general condition-based 
maintenance model leads to the formulation of a 
decision problem at least in a two dimensions space. 
For a “simple” condition-based periodic 
inspection/replacement policy, we have to determine 
the replacement threshold and the inspection period. 
Obviously, the problem dimension increases with the 
complexity of the considered policy, e.g. to take into 
account several different maintenance operations 
(complete replacements or overhauls, minimal repairs, 
partial and imperfect repairs,…). In theory, the 
decision problems corresponding to these more 
complex policies can be formulated using the dynamic 
programming tools, and their performance can be 
evaluated using classical policy optimisation 
algorithms (Policy Iteration Algorithm). Several works 
have followed this approach [15]; however, we may 
see two main problems with it : 
 
• from a theoretical point of view, for a general 

policy, it can be difficult and burdensome to 
formalise and solve the corresponding decision 
problem, even numerically ; 

• from a practical point of view, the resulting 
structure of the optimal policy can be quite complex 
and hard to implement on a real system. 

 
Our preferred approach is to impose a parametric 
structure to the maintenance policy, and the parameters 
of this structure constitute the maintenance decision 
variables. The advantage of this approach is to reduce 
the size of the problem space when searching for the 
optimal policy. Of course, there is a risk that the 
imposed structure does not correspond to the 
absolutely optimal policy. However, even if a proof is 
not available in the general case, several existing 
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results [23,24] indicate that for systems with a 
stationary Markovian deterioration, the two following 
features are desirable: 
 
• The replacement decision is based on “control 

limit decision rule”, viz., the system is replaced when 
the deterioration level exceeds a threshold. When 
several different maintenance actions are to be 
considered, a multi-level control limit decision rule 
can be adopted; 

• The inspection schedule is constructed 
dynamically and sequentially to adapt to the 
observed deterioration level of the system: a more 
deteriorated system is inspected more frequently. 
After an inspection, the inter-inspection time (i.e. 
until the next inspection) is determined as a function 
of the system state (or deterioration level) using an 
“inspection scheduling function”. This “inspection 
scheduling function” can be either continuous (for 
continuous time problems) or step-wise (for discrete-
time problems), see Figures 3 and Figure 4. 

 
The resulting policies belong to the class of stationary 
Markovian policies, deterministic of partly randomized 
(when e.g. the repair level can be random). 
 
3.3. Policy performance assessment 

The performance of maintenance policies are usually 
assessed through the availability of the maintained 
system and the overall maintenance costs balance. In 
this paper, we focus only on an asymptotic evaluation 
of these quantities, i.e. the expected cost per time unit 

∞C and the asymptotic unavailability ∞A  over an 
infinite horizon. 
 

 
       
Figure 3. Step-wise inspection scheduling function 
 

…. 
Figure 4. A continuous inspection scheduling function 
        
Cost criterion: the cumulated maintenance cost at time 
t , denoted )(tC , includes both direct and indirect 
maintenance costs (maintenance crew costs, spare 
parts, production loss, performance degradation,…). 
The expected maintenance cost per time unit over an 
infinite time span is given by: 
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Availability criterion: denoting )(tD  the cumulated 
unavailability duration of the system up to timet , the 
asymptotic unavailability is given by: 
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The main objective of a mathematical maintenance 
model is then to allow the evaluation of these 
quantities C∞ and A ∞. The construction of such a 
model requires first the modelling of the stationary 
behaviour of the maintained system state. 
  
3.4. Modelling the maintained system 
deterioration behaviour 

 Maintenance actions modify the deterioration 
behaviour and permit to control the deterioration 
process. Let assume that the action of the maintenance 
policy leads the maintained system to exhibit a 
stationary behaviour. The aim of the maintenance 
optimization is then to tune the maintenance 
parameters (thresholds, inter-inspection times, …) in 
order to keep the deterioration level of the system in an 
optimal zone where maintenance costs optimally 
balance the failure and deterioration cost, so that the 
profit from the system is maximum.  
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Regenerative properties of the maintained system 
state - A very classical approach to this problem is to 
derive an evaluation procedure for the asymptotic 
criteria taking advantage of the renewal properties of 
the stochastic process describing the maintained 
system state. Indeed, after an as-good-as new 
(preventive or corrective) replacement, the stochastic 
deterioration process { }0),( ≥ttX starts again from the 
new state ( 0)0( =X ); it evolves with the same 
probabilistic behaviour and is independent from the 
past, viz the history and past events of the system 
before the replacement. The stochastic process 
describing the maintained system is thus a regenerative 
process and the replacement times nS  are renewal 
points (and regenerative times) for this process, [1], 
[3], [19], see Figure 5. Applying classical renewal 
theorems, the expected cost per time unit on an infinite 
horizon can be computed as the ratio of the expected 
cost on a renewal cycle over the expected length of a 
cycle: 
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where S  is the time of the first replacement. 
Similarly, we have: 
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This classical approach has proven its efficiency and 
simplicity of use for classical “static” preventive 
maintenance policies, [23], [24]. However, for more 
complex, dynamic, condition-based maintenance 
policies, this approach based on renewal properties of 
the maintained system state turns out to be rather 
difficult to use. 
When the maintenance policy includes several 
different maintenance operations (and not only as-
good-as new replacements), a maintenance action does 
not necessarily ends up with a system renewal and a 
return to zero of the corresponding stochastic process. 
The time between two consecutive as-good-as new 
replacements can be very long and, consequently, the 
evolution of the system on a renewal cycle can be very 
difficult to apprehend and to characterize. It is thus 
difficult to compute the expectations in Equations (1) 
or (2). 
When maintenance decisions are based on the 
deterioration level, and not only on the fact that the 
system is either running or failed, the knowledge of the 
lifetime law is not sufficient to solve the maintenance 
problem. It is also necessary to know the probability 
law of the deterioration level of the maintained system. 

 

 
     
Figure 5. Schematic evolution of the maintained 
system state with inspection (bullets), partial repairs 
(x) and as-good-as new replacements (+). Note the 
difference between semi-regenerative (or Markov 
renewal) cycles and regenerative (or renewal) cycles. 
 
In both cases, it is not easy to use the regenerative 
properties of the maintained system state to solve the 
problem. However, to overcome this difficulty, it is 
often convenient to use its semi-regenerative properties 
(if any). 
 
Semi-regenerative properties of the maintained system 
state – The implementation of a Markovian stationary 
inspection & maintenance policy on a Markovian 
deteriorating system brings semi-regenerative (or 
Markov renewal) properties to the process describing 
the maintained deterioration state. Under these 
Markovian assumptions, the maintenance decisions 
depend only on the observed deterioration level, and 
the maintenance actions modify the deterioration level, 
but have no effect on the degradation process itself, viz 
the underlying deterioration mechanism (obviously, 
this is only a working assumption in the proposed 
Markovian modelling framework, and in general a 
maintenance action can very well modify the 
deterioration mechanism itself). Consequently, the 
future behaviour of the system after an inspection 
depends only if the deterioration level revealed by the 
inspection. In other words, conditionally to the 
deterioration level measured upon an inspection, and at 
steady-state, the deterioration process before and after 
the inspection are independent and follow the same 
probability law. The embedded discrete-time process 
describing the system deterioration level at the 
inspection times is a Markov chain with stationary 
lawπ , [1], [3]. The maintained deterioration process is 
also a semi-regenerative process and two successive 
inspection times kT  and 1+kT  define thus a Markov 
renewal (or semi-regenerative) cycle, see Figure 5. 
These semi-regenerative properties can then be used 
with profit both to compute the asymptotic criteria of 
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maintenance performance and to determine the 
stationary law of the maintained system state. 
 
Evaluation of the asymptotic performance criteria – To 
compute these criteria, the semi-regenerative property 
offers a solution more efficient than the classical 
renewal theorem. Instead of considering a renewal 
cycle, the study can be conducted on a Markov renewal 
cycle between to inspections, which simplifies 
considerably the analysis. But, the price to pay for this 
simplification is that we have to consider such a cycle 
at steady-state, viz the expectations in Equations (1) 
and (2) have to be computed with respect to the 
stationary law of the maintained system state (which 
has to be evaluated). For example, we have: 
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where T is the time between two inspections at steady-
state. 
 
Determination of the stationary law of the maintained 
system state – The semi-regenerative property allows 
one to shorten significantly the study horizon: a 
Markov renewal cycle (between two inspections) is 
enough and it becomes easier to analyze its behaviour. 
It is thus possible to determine the transition 
probability law of the process, and then solving the 
invariance equation to obtain the stationary law π . 
 
In conclusion, for condition-based maintenance 
policies, once the parametric structure has been chosen 
for the maintenance decision rule, the evaluation of the 
performance criteria relies mainly on the probabilistic 
modeling of the deterioration of the maintained system 
at steady-state, which is completely characterized by 
its stationary law. The derivation of the transition 
probability law and the stationary law of the 
maintained system state is thus the enabling key, and 
of course, the main difficulty of this modeling work. 
When compared to more classical maintenance models 
based on lifetime law, this point constitutes the 
additional modeling task. Once the steady state model 
of the maintained system state is available, it is 
generally easy to compute the performance criteria as a 
function of the maintenance parameters, and then to 
find the optimal values of these parameters. The use of 
these semi-regenerative techniques can be seen as an 
extension to continuous time and deterioration level of 
the semi-Markovian techniques presented by 
Gertsbakh in [10] as one of the most powerful tools to 
tackle the discrete time and discrete state condition-
based maintenance problems. 
 
In the following, we illustrate this modeling approach 

on two examples of condition-based maintenance 
policies. 
 

 
     
Figure 6. Schematic sample path of the maintained 
deterioration level 
 
4. A continuous time condition-based 
inspection & replacement policy  

This section presents the policy presented and studied 
in, e.g., [11]. 
 
4.1. Policy structure 

Consider the following condition-based inspection and 
replacement policy. After the nth inspection performed 
at time nT , we have to decide whether the system 
should be replaced or not, and the time of the next 

inspection 1+nT . We adopt the decision rule (−nT  refers 
to the time just before the maintenance action): 
 

• If LTX n ≥− )( , the failed system is correctively 
replaced at a cost ccand the unavailability duration 
since the previous inspection )(td generates a cost at 
a rate rd . After replacement, the system is as good as 
new ( 0)( =nTX ). 

• If LTXM n <≤ − )( , the system is preventively 

replaced at a cost cp  (with cp cc ≤ ). After 

replacement, the system is as good as new 
( 0)( =nTX ). 

• If MTX n <− )( , the system is left as it is 

( )()( −= nn TXTX ). 
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• In any case, the time of the next inspection is 
computed as nnn TTT ∆+=+1  with )( nn TmT =∆ , 
where m(.) is the inspection scheduling function 
defined in Section 3.2, see also Figure 4. 

 
All the maintenance actions are assumed to have a 
duration equal to zero, i.e. their duration is considered 
to be negligible and neglected in the model. With this 
decision structure, the two maintenance decision 
“variables” are the replacement threshold M  and the 
function m(.). Figure 6 shows a sample path of the 
deterioration process of the maintained system under 
this policy. 
 
4.2. Policy performance evaluation 

The policy performance can be quantified by the total 
expected maintenance cost per time unit on an infinite 
time span due to both maintenance operations and 
unavailability of the maintained system, C∞ . The 
cumulated maintenance cost at time t  is: 
 
   )()()()()( tdrtNctNctNctC dccppii +++=  

 
where )(tNi  is the number of inspections at time t  

and )(tN p  (resp. )(tNc ) the number of preventive 

(resp. corrective) replacements at time t . 
The choice of the policy parameters affects directly the 
number and the nature of the maintenance operations, 
and consequently the cumulated cost )(tC . The 
expected cost per time unit over an infinite time span 
C∞  is given by: 
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At this point, all the difficulty is now to evaluate the 
four terms (limits and expectations) in the above 
expression. In order to simplify the analysis and as 
explained in Section 3.4., it can be noticed that the 
process { }0),( ≥ttX describing the maintained system 
state exhibits both regenerative and semi-regenerative 
properties: 
• Each replacement returns the system to an as-

good-as new state, and the deterioration process 
starts again with the same law. The 
process{ }0),( ≥ttX is thus a regenerative process; 

the replacement times kS  are regenerative points and 
form a renewal process. 

• After each inspection at time kT , the future 
evolution of the maintained system state depends 
only on the observed deterioration level: 

conditionally to the deterioration level at kT , the 

processes { }0),( ≥ttX  and { }0),( ≥+ tTtX k  have 

the same law. The process{ }0),( ≥ttX is thus also a 
semi-regenerative process and the inspection times 
Tk  are its semi-regenerative points. Moreover, the 
discrete-time stochastic process describing the 
system state at each inspection { } 0)()( ≥= kkTXkY is a 

continuous state ([ [M,0 ) Markov chain and the 

process { }kk TY ,  is a Markov renewal process. Since 
after an inspection, there is a non-zero probability for 
the system to return to the new state, the transition 
probability law of the process { } 0)( ≥kkY is a convex 

combination of a pdf and a Dirac mass: 
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where βα ,f  and βα ,F  correspond respectively to the 

pdf and survival function associated to the Gamma 
law. Note that the two parts of )|( xdyP  correspond 
to two different evolution scenarios on a semi-
renewal cycle: natural deterioration or return to 0 
after replacement. 

 
The regenerative property allows the use of classical 
renewal results, as described in Section 3.4.. However, 
the study of the maintained deterioration process 
remains difficult even if conducted on a renewal cycle 
and the computations of both [ ])(SCE  and [ ]SE  are 

not easy because the processes { }0),( ≥ttX  and 

{ }kk TY ,  are “imbricated”. In order to reduce further 
the analysis horizon, we can take advantage of the 
semi-regenerative property of the maintained 
deterioration process and use Equation (3) to compute 
the cost criterion. Now, all the difficulty comes from 
the evaluation of the stationary law π  of the Markov 
chain { } 0)( ≥kkY which can be obtained as the solution 

of the invariance equation: 
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It can be shown [10] that the solution of this equation 
is also a convex combination of a pdf and a Dirac mass 
[1]: 
 
   dxxbadxadx )()1()()( 0 −+= δπ  
 
where  
 

   ))(1/(1 0∫+= M dxxBa ,  
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and )(yB is solution of the renewal equation: 
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Once the stationary law π  is available, the cost 
criterion can be computed as (T  is the time between 
two inspections at steady-state): 
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On a semi-regenerative cycle, one and only one 
inspection is performed; thus, we have [ ] 1)( =TNE iπ . 
The other quantities involved in Equation (4) can be 
computed as follows: 
 
• Expected number of preventive replacements 

on a semi-regenerative cycle: 
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• Expected number of corrective replacements 

on a semi-regenerative cycle: 
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• Expected unavailability duration on a semi-

regenerative cycle: 
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• Expected length of semi-regenerative cycle: 
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4.3. Numerical example 

For a numerical illustration of the use of this model to 
assess the performance of this policy, we consider a 
linear inspection scheduling function 

)0),(max(1)( xnxm +=  where )(xn  is defined by 

xbaaxn )/()( −= . In this case, the maintenance 
policy parameters to be optimized are a , b , and M . 
For the data set 1=α , 1=β , 12=L , 25=ic , 

50=pc , 100=cc  and 250=dr , the optimal values 

(obtained by a classical optimization algorithm) are 

5.5* =a , 5.5* =b  and 6.5* =M . Figure 7 presents 
the iso-level cost curves in the plane (a,b) .computed 
for 6=M . 
 

 

Figure 7. Iso-level maintenance cost curves for the 
condition-based inspection & replacement policy. 
 
5. A discrete-time inspection, repair & 
replacement policy 

In this section, we apply the proposed modelling 
approach to a more general policy in discrete time 
proposed in [2]. The considered maintenance policy 
includes partial repairs, together with inspections and 
as-good-as new replacements. The partial repairs do 
not renew completely the system, but they improve it 
by returning to a lower deterioration level. We also 
relax the assumption of instantaneous and immediate 
maintenance actions: during each maintenance action 
(even inspection) the system is stopped, and the 
maintenance action contribute in this sense to increase 
the system unavailability. Again, the model 
development proposed in this section illustrates the use 
of semi-regenerative techniques to solve the 
maintenance model. 
 
5.1. Policy structure 

The system deterioration is observed on a discrete-time 
grid tktk ∆= , and the deterioration increment on a 
period ∆t follows a Gamma law f . After an 

inspection at kt  revealing a deterioration level 

ytX k =)( , we adopt a decision rule based on multi-
level control limit rule involving 2+N  thresholds. 
The first 1−N  thresholds 1ξ  to 1−Nξ  are used to 
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schedule the inspections, see Figure 3. The thresholds 

Nξ  and 1+Nξ  are respectively the repair and 
replacement thresholds. A threshold ζ  is introduced to 
determine the depth repair and delimit the so-called 
“re-starting zone” in which the deterioration level must 
lie after a repair. We adopt the following decision rule, 
se Figure 8: 
 
• No action on the system and next inspection 

scheduling: if [ [1, +∈ lly ξξ  with 1,...,0 −= Nl , the 
system is left as it is and the next inspection is 
scheduled tlN ∆− )(  later. This inspection incurs a 

cost ic  and lasts a random time iτ . 
 

 

Figure 8. Parametric structure of the maintenance 
decision rule. 
 
• Repair: if [ [1, +∈ NNy ξξ , the system 

undergoes a partial repair which improves its 
deterioration level by a random quantity ∆ywithout 
renewing it completely. The deterioration level after 
repair is known and lies in the restarting zone, i.e. 

ζ<∆− yy . If [ [1,)( +∈∆− llyy ξξ  with 
1,...,0 −= Nl , the next inspection is scheduled 

tlN ∆− )(  later. The repair cost ),( yycr ∆  may 
depend on the efficiency (or depth) of the repair. The 
repair duration )(yrτ  may also depend on its 
efficiency. 

• Replacement: if 1+> Ny ξ , the system is 
undergoes and as-good-as new replacement, either 
preventively if [ ]Ly N ,1+∈ ξ , or correctively if .Ly ≥  
The next inspection is scheduled tN∆  later. A 
preventive (resp. corrective) replacement incurs a 
cost pc  (resp. cc) and stops the system for a random 

duration equal to rpcτ . 

 
Within this maintenance decision structure, the 
thresholds kξ  allow the control of the balance between 

preventive and corrective actions, and the threshold ζ  
allows the control of the trade-off between the 
efficiency and cost of the repair actions. 
 
Figure 9 presents a sample path of the maintained 
deterioration process under this policy. 
 
5.2. Stochastic modelling of the maintained 
system state 

For this policy again, the study, analysis and modelling 
of the behaviour of the maintained system state can be 
significantly simplified if we take advantage of the 
semi-regenerative properties of the corresponding 
process. 
 

 
Figure 9. Sample path of the maintained system state 
for a 4-threshold policy ξ1,ξ2,ξ3,ζ   (N = 2). ● 
marks the beginning of a maintenance operation; ❍ 
marks the end of an operation. 
 
Because of the presence of perfect replacements, the 
maintained system state is a regenerative process. 
However, as shown in Figure 9, the renewal cycles 
(viz., between two replacements) can be very long and 
quite complex to describe. Consequently, this 
regenerative property does not help that much to solve 
the problem.  
The system evolution after the beginning of any 
maintenance operation depends only on the level of 
deterioration y observed at its onset. Conditionally on 
y , the characteristics of the maintenance operation 
(length, cost, effect) and the future evolution of the 
system after this action do not depend on the past. The 
maintained deterioration process is thus a semi-
regenerative process. The times nT of the beginning of 
the maintenance operations are the semi-regeneration 
or Markov renewal points. The deterioration level at 
the beginning of the maintenance operations 
{ }0 ),( ≥= nTXY nn  form the embedded Markov chain 
of the process; the Markov renewal points delimit 
independent cycle, conditionally on the Markov chain 
{ }0 , ≥nYn . 
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In order to assess the performance of this maintenance 
policy, the horizon can be limited to a semi-
regenerative cycle. A semi-regenerative cycle is 
completely characterized by the deterioration level y  
at the beginning of the maintenance action, and more 
precisely by the following quantities, all dependent on 
y: effect of the maintenance action on the 
deterioration level ( y∆ ), maintenance action duration 
(τ ), system deterioration level after maintenance 
( yy ∆− ) and time of the next inspection which marks 
the end of the cycle (the unknown system state at this 
time is denoted x ). The evolution from the 
deterioration level y  to the level x  on the semi-
regenerative cycle corresponds necessarily to one the 
three following scenarios. 
 
• Scenario 1 (inspection): [ [1, +∈ lly ξξ  with 

1,...,0 −= Nl , an inspection is performed and the 
system is unavailable for a duration iτ . The 
deterioration level is not altered by the inspection 
and the next inspection is scheduled tlN ∆− )(  later; 
thus the deterioration increment x− y until this next 

inspection follows the probability law )( lNf − . 

• Scenario 2 (repair): [ [1, +∈ NNy ξξ , a partial 
preventive repair is triggered which rejuvenates the 
system by a random quantity y∆ , following a 

probability law yf ∆  defined on [ ]yy ,ζ− . The 

system is unavailable for a random duration )( yr ∆τ . 
After repair, the degradation level yyz ∆−=  lies in 

the restarting zone [ [ζ,0  and in an inspection zone 

[ [1, +∈ lly ξξ , 1,...,0 −= Nl . An inspection is 
scheduled tlN ∆− )(  later. The deterioration 
increment until this future inspection )( yyx ∆−−  

follows a probability law )( lNf − . 

• Scenario 3 (replacement): 1+≥ Ny ξ , a 
replacement (preventive or corrective) is performed 
and the system is unavailable for a random duration 

)(yrpcτ . After replacement, the system is as-good-as 

new and the next inspection is scheduled tN∆  later. 
The deterioration increment until this next inspection 

x follows a probability law )(Nf . 
 
The evolution of the maintained deterioration level at 
steady-state can be characterized by two quantities: 
 
Stationary law of the maintained system state π  which 
can be computed as the solution of the invariance 
equation 
 

   ∫= ∞
0 )|()()( dyyxFyx ππ  

 
where the transition law )|( yxF  from a level y  to a 
level x is constructed from the three above-mentioned 
scenarios as follows: 
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Probability ),( ykPi  of the length (in t∆ ) of a 

maintenance action initiated at the deterioration level 
y: since the characteristics of a maintenance operation 
depends only on the deterioration level at its 

beginning, the probability ),( ykPi  can be evaluated 
from the three scenarios as follows: 
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5.3. Policy performance evaluation 

We can consider two performance criteria: the 
expected maintenance cost rate on an infinite time span 
and the asymptotic availability of the system. 
 
Cost criterion: it is composed of the costs due to 
maintenance operations themselves )(tmΓ , the cost of 

unavailability due to system failure )(tuΓ  and the cost 

of inactivity of the system for maintenance )(tiΓ : 
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Availability criterion: it is evaluated from the 
cumulated time spent in the operating phase )(tDo and 

the cumulated time spent in the failed state )(tDu : 
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Using the semi-regenerative properties and Equation 
(3), the criterion cost can be computed as (T is the 
time between two inspections at steady-state): 
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All the quantities involved in the expression of ∞C can 
be evaluated numerically by integration from )(xπ  and 

),( ykPi . Consider for example the cost associated to 
the maintenance operations, gathering costs of 
inspections, repairs and replacements: 
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The availability criterion can be evaluated as: 
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Here again, all the quantities involved in the 
expression of ∞A  can be evaluated numerically by 

integration from )(xπ  and ),( ykPi . 
Note however that a further modelling work is 
necessary to evaluate completely the criterions. For 
example, one has to determine the cost function 

),( yyCr ∆  or the pdf yf ∆ . Further information on the 

system, expert opinion or working assumptions have to 
be injected in the model at this point. After this 
criterion evaluation, the policy optimization requires 
algorithms adapted to the multi-criterion formulation 
of the problem, and to the number and nature of 
parameters to be optimized. 
 
6. Possible extensions 

The above-presented models can be extended in 
several directions. The deterioration has been assumed 
to be stationary; however, this is seldom the case in 
practice. The deterioration can undergo abrupt changes 

because, for example, of a varying environment or 
demand on the system. In this case, the condition-
based maintenance policy has to be adapted: 
 
An on-line monitoring procedure can be added to 
detect the changes in the deterioration process. When a 
change is detected, the maintenance thresholds are 
updated to match the actual deterioration mode. This 
approach offers a solution to adapt the maintenance 
decision to a varying deterioration process, but 
introduces new sources of uncertainties because of the 
false alarms generated by the monitoring/change 
detection procedure. The monitoring and maintenance 
parameters have to be jointly optimize in order to reach 
an overall optimal performance for the 
monitoring/maintenance policy, [8,20]. 
 
The changes in the deterioration process can be due to 
a stressful environment. If the effect of the 
environment on the deterioration process and if the 
environment can be monitored, better maintenance 
performances can be obtained if the environment 
monitoring information is introduced in the 
maintenance decision procedure [6].  
 
However, in such cases, the maintenance modelling 
problem becomes more complex, and is not always 
solvable by analytical means, even with the semi-
regenerative techniques and we may have to resort, 
even partially, to stochastic simulation techniques. 
 
7. Conclusion 

The two main lessons from this lecture could be: 
 
1) to show the interest of condition-based maintenance 
policies based on “grey-box” deterioration models : 
such policies have allows the dynamic adaptation of 
the maintenance decisions to the temporal variability 
of the deterioration and the control of the system 
deterioration around a level where preventive and 
corrective maintenance costs reach an optimal balance; 
 
2) to show the efficiency of semi-regenerative 
techniques which provide an efficient tool to solve 
maintenance modelling problems for “complex” 
maintenance policies. 
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