Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
In this article we construct a finite-difference scheme for the three-dimensional equations of the atmospheric boundary layer. The solvability of the mathematical model is proved and quality properties of the solutions are studied. A priori estimates are derived for the solution of the differential equations. The mathematical questions of the difference schemes for the equations of the atmospheric boundary layer are studied. Nonlinear terms are approximated such that the integral term of the identity vanishes when it is scalar multiplied. This property of the difference scheme is formulated as a lemma. Main a priori estimates for the solution of the difference problem are derived. Approximation properties are investigated and the theorem of convergence of the difference solution to the solution of the differential problem is proved.
Rocznik
Tom
Strony
391--396
Opis fizyczny
Bibliogr. 22 poz., wykr.
Twórcy
autor
- al-Farabi Kazakh National University, Almaty, Kazakhstan
autor
- al-Farabi Kazakh National University, Almaty, Kazakhstan
autor
- Lublin University of Technology, Lublin, Poland
Bibliografia
- [1] A. A. Samarskiy, E.S. Nikolayev, “Metody resheniya setochnykh uravneniy,” Nauka, 1978, pp.420–592.
- [2] V. C. Loukopoulos, G. T.Messaris, G. C. Bourantas, “Numerical solution of the incompressible Navier–Stokes equations in primitive variables and velocity–vorticity formulation,” Applied Mathematics and Computation, 222, Oct. 2013, pp. 575-588.
- [3] K. Wang, “Iterative schemes for the non-homogeneous Navier–Stokes equations based on the finite element approximation,” Computers & Mathematics with Applications, 71, Jan. 2016, pp. 120-132.
- [4] A. Veneziani, Ch. Vergara, “An approximate method for solving incompressible Navier–Stokes problems with flow rate conditions,” Computer Methods in Applied Mechanics and Engineering, 196, Feb. 2007, pp. 1685-1700.
- [5] X. Zhang., M. Chen, C.S. Chen, Li. Zhiyong, “Localized method of approximate particular solutions for solving unsteady Navier–Stokes problem,” Applied Mathematical Modelling, 40, Feb. 2016, pp. 2265-2273.
- [6] C. Taylor, P. Hood, “A numerical solution of the Navier-Stokes equations using the finite element technique,” Computers & Fluids, 1, Jan. 1973, pp. 73-100.
- [7] J. Feifei, L. Jian, Ch. Zhangxin, Z. Zhonghua, “Numerical analysis of a characteristic stabilized finite element method for the time-dependent Navier–Stokes equations with nonlinear slip boundary conditions,” Journal of Computational and Applied Mathematics, 320, Aug. 2017, pp. 43-60.
- [8] V. M. Kovenya, “Ob ustoychivosti skhem rasshchepleniya i priblizhennoy faktorizatsii dlya resheniya sistem mnogomernykh uravneniy,” Vychislitel'nyye tekhnologii. 6, 2011, pp. 38-47.
- [9] A. Smolarz, V. Lytvynenko, O. Kozhukhovskaya, K. Gromaszek, “Combined clonal negative selection algorithm for diagnostics of combustion in individual PC burner,” Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 4, 2013, pp. 69-73.
- [10] V. Mashkov, A. Smolarz, V. Lytvynenko, K. Gromaszek, “The problem of system fault-tolerance,” Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 4, 2014, pp. 41-44.
- [11] G. M. Kobel'kov, “Simmetrichnyye approksimatsii uravneniy Nav'ye–Stoksa,” Matem. sb., 193(7), 2002, pp. 87–108.
- [12] A. V. Drutsa, G. M. Kobel'kov, “O skhodimosti raznostnykh skhem dlya uravneniy dinamiki okeana”, Matem. sb., 203(8), 2012, pp. 17–38.
- [13] N. I. Sidnyayev, N. M. Gordeyeva, “O tochnosti raznostnoy skhemy dlya uravneniy Nav'ye–Stoksa,” Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(34), 2014, pp. 156–167.
- [14] J. Blascoa, R. Codinab, “Space and time error estimates for a first order, pressure stabilized finite element method for the incompressible Navier–Stokes equations,” Applied Numerical Mathematics, 38, 2001, pp. 475–497.
- [15] H. Guoliang, H. Yinnian, Z. Chen, “A penalty finite volume method for the transient Navier–Stokes equations,” Applied Numerical Mathematics 58, 2008, pp. 1583–1613.
- [16] J. de Frutos., B. García., J. Novo, “Two-Grid Mixed Finite-Element Approximations to the Navier-Stokes Equations,” Journal of Scientific Computing, 52, Sept. 2012, pp. 619-637.
- [17] A. N. Temirbekov, N. T. Danaev, E. A. Malgazhdarov, “Modeling of Polutants in the Atmosphere Based on Photochemical Reactions,” Eurasian chemico-technological journa., Vol. 16, 2014, pp. 61-71.
- [18] O. A. Ladyzhenskaja, “Matematicheskie voprosy dinamiki vjazkoj neszhimaemoj zhidkosti”, Nauka, Moscow, 1970, pp 27-243
- [19] O. M. Belocerkovskij, “Chislennoe modelirovanie v mehanike sploshnyh sred, Fizmatlit,” Moscow, 1994, pp. 34-321.
- [20] I. Manak, W. Wójcik, V. Firago, P. Komada “Pomiar stężenia CO z wykorzystaniem metod TDLAS w bliskiej podczerwieni,” Przegląd Elektrotechniczny, 3, 2008, pp. 238-240.
- [21] S. Cięszczyk, P. Komada, A. Akhmetova, A. Mussabekova, “Metoda analizy widm mierzonych z wykorzystaniem spektrometrów OP-FTIR w monitorowaniu powietrza atmosferycznego oraz gazów w procesach przemysłowych,” Rocznik Ochrona Środowiska, 18, 2016, pp. 218-234.
- [22] D. Sawicki, A. Kotyra, “Porównanie wybranych metod wyznaczania obszaru płomienia w wizyjnym systemie diagnostycznym,” Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 4, 2013, pp. 14-17.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4fd70357-a6c7-4c67-b8d3-ae2167ba1621